Organic Chemistry - St Mary's College, Wallasey

Download Report

Transcript Organic Chemistry - St Mary's College, Wallasey

Organic Chemistry
Structures
1
What do I need to know?
1. Translate between molecular, structural and ball and
stick representations of simple organic molecules
2. Describe how the functional group affects the
property of an organic compound and understand
that alkanes are unreactive towards aqueous
reagents because C—C and C—H bonds are
unreactive;
3. Write balanced chemical reactions including for
burning hydrocarbons including state symbols
2
Representations of organic molecules
• There are a number of different ways to represent
organic molecules.
• Ball and stick – this is just like molymods
3
Representations of organic molecules
• Structural formula – this is where we show the
covalent bonds between atoms as a line
• Semi-structural (molecular) – this is where we
write out the formula but do not include bonds;
these are implied eg CH3CH2OH
4
• Molecular formula – this simply counts the numbers of
each sort of atom present in the molecule, but tells you
nothing about the way they are joined together.
• Eg C2H6O
• This is the least helpful type of formula as it could be one
of two (or more) different chemicals
5
Example question
6
Mark scheme
7
Rules of organic molecules
Generally speaking
Carbon must make four bonds
Nitrogen must make three bonds
Oxygen must make two bonds
Hydrogen must make one bond
A double bond counts as two bonds eg C=C or C=O. A
triple bond counts as three bonds.
8
AfL - Quiz
1.
2.
3.
4.
5.
Draw the structural formula for butanol
Write the molecular formula for butanol
Draw the structural formula for hexane
Write the molecular formula for hexane
Write the molecular formula for an alkane with 25
carbon atoms.
6. How many bonds does oxygen make in methanol?
7. Give an example of a use for ethanol
8. Give an example of a use for methanol
9
1.
2.
3.
4.
5.
6.
7.
Butanol
C4H10O
Hexane
C6H14
C25H52
2
Fuel/feedstock for synthesis/solvent/used in
perfume
8. Solvent, antifreeze, feedstock for adhesives and
plastics
10
Understanding reactivity
• Alkanes are unreactive towards aqueous reagents
because C-C and C-H bonds are unreactive.
• What about organic molecules that have different
bonds?
• We call families of different types of bonded
atoms FUNCTIONAL GROUPS
• An example is the –OH group or alcohol group.
11
Different functional groups
Name
Functional group
Properties
Alkane
C-H
Relatively unreactive, burns
in air due to hydrocarbon
chain
Alkene
C=C
Used as a feedstock to make
polymers
Alcohol
-OH
Good solvent, volatile, burns
in air due to hydrocarbon
chain
Carboxylic acid
-COOH
Weak acid such as vinegar
Ester
RCOOR’
Have distinctive smells such
as fruits
12
Alkanes and combustion
• Because of the hydrocarbon chain alkanes burn
readily releasing large amounts of energy.
• Alkanes are therefore used as fuels.
• When they burn completely they make carbon
dioxide and water.
eg octane (found in petrol)
C8H18 +12 ½ O2 8CO2 + 9H2O
13
Example question
14
Mark scheme
15
Example question
16
Mark scheme
17
Balanced chemical equations
Write the balanced chemical equation for burning
ethanol in air as a fuel and burning pentane as a fuel
(include state symbols).
18
Answers
Ethanol
2C2H5OH(l) + 6O2(g)  4CO2(g) + 6H2O(l)
Pentane
C5H12(l)+ 8O2(g)  5CO2(g) + 6H2O (l)
19
Example questions
20
Mark scheme
21
Alcohols and the Manufacture of
Ethanol
C7.1 and C7.5
22
What do I need to know?
1. The characteristic properties of alcohols are due
to the presence of an –OH functional group
2. Know a range of methods for synthesising ethanol
and limitations of fermentation reactions
3. Be able to explain why bioethanol is important for
sustainability
23
Functional groups - reminder
• Look back at your table of functional groups.
• Write a short paragraph to explain why different
organic chemicals have different properties in
terms of functional groups.
• Use examples such as “carboxylic acids are acidic
because they have a –COOH group”.
24
Can you recognise the functional group?
• Circle which of these are alcohols?
25
Answer
• Alcohols have an –OH group
26
Properties and uses of alcohols
Properties:
• volatile liquid (evaporates quickly at room
temperature – more than water)
• colourless
• burns readily in air because of the hydrocarbon
chain
• good solvent
27
Example question
28
Mark scheme
29
Uses of ethanol and methanol
Ethanol: biofuels, solvents, feedstock for synthesis
Methanol: cleaner, feedstock for synthesis
Feedstock is the name we give to an “ingredient” on
a chemical plant
30
Reactions of different functional groups
• This is illustrated very well by comparing the
reaction of sodium with ethanol, hexane and
water.
• You have seen this reaction. Fill in the following
table and compare with the mark scheme:
31
Observations with sodium
32
Mark scheme
33
Comparing functional groups
34
Mark scheme
35
How do we make ethanol?
• Fermentation is a key process for obtaining
ethanol. It is relatively cheap and requires wheat
or beet sugar.
• The process involves the anaerobic respiration of
yeast at temperatures between 20 and 40°C and
at pH 7.
36
Conditions for fermentation
• Outside an optimum temperature the yeast does not work (high
temperatures kill the yeast).
• Outside an optimum pH the yeast does not work (extremes of pH kill the
yeast).
• To make ethanol the yeast must respire anaerobically (without oxygen).
• Eventually the ethanol concentration will be too high for the
fermentation to continue. This means only a dilute solution can be made.
37
Example question
38
Mark scheme
39
Example question
40
Mark scheme
41
Example question
42
Mark scheme
43
How do we obtain a concentrated
solution?
• Ethanol has a different boiling point to water. We
can therefore separate water and ethanol using
distillation.
44
Example question
45
Mark scheme
46
Making ethanol using ethane from crude
oil
Ethane to ethene by
CRACKING
C2H6  CH2=CH2
• zeolite catalyst OR
• heat
Ethene to ethanol by
reaction with STEAM
CH2=CH2 + H2O 
CH3CH2OH
47
• phosphoric
acid catalyst
Example question
48
Mark scheme
49
Working out masses
• We can use the useful relationship
Mass1 Mass2
=
Mr1
Mr2
• Where Mr is the molecular mass
• eg Mr of ethane C2H6 is (2 X 12) + (6 x 1) = 30
50
Example question
51
Explanation
• In this question every ethene molecule that reacts makes
one molecule of ethanol.
• We need to relate the number of molecules to mass using
our equation.
Mass1 Mass2
=
Mr1
Mr2
•
•
•
•
Mass 1 is mass of ethene = 1 tonne
Mr 1 is Mr of ethene = 28
Mass 2 is mass of ethanol = ?
Mr 2 is Mr of ethanol = 46
52
Mark scheme
53
Example question
54
Mark scheme
55
Other alternatives
• Ethanol has also been synthesised using
genetically modified e-coli bacteria and sugars
from seaweed.
• This process is sustainable as the seaweed and
bacteria are renewable sources
• Like yeast, bacteria can be killed by high
concentrations of alcohol and high temperatures
56
Example question
57
Mark scheme
58
Ethanol – Key facts
• Ethanol is made on an industrial scale as a fuel, a solvent
and as a feedstock for other processes;
• There is a limit to the concentration of ethanol solution that
can be made by fermentation and there are optimum
conditions of pH and temperature.
• Ethanol solution can be concentrated by distillation to make
products such as whisky and brandy;
• Genetically modified E. coli bacteria can be used to convert
waste biomass from a range of sources into ethanol and
recall the optimum conditions for the process;
• Ethane from crude oil can be converted into ethanol
• Evaluating the sustainability of each process is important.
59
Bioethanol cycle
Plants
photosynthesise
•Remove CO2 from
atmosphere
Replanting
Fermentation
•Photosynthesis
removes CO2
•produces ethanol fuel
Burning
•Releases CO2 into
atmosphere
60
Balancing carbon cycle equations
• Glucose (a simple sugar) is created in the plant by
.
• Can you balance the following equation for
photosynthesis?
6 CO2 + 6 H2O → C6H12O6 + 6 O2
61
Balancing carbon cycle equations
During ethanol
, glucose is
decomposed into ethanol and carbon dioxide.
Can you balance this equation?
C6H12O6 → 2 CH3CH2OH+ 2 CO2
62
Balancing carbon cycle equations
During
ethanol reacts with oxygen to
produce carbon dioxide, water, and heat:
Can you balance this equation?
CH3CH2OH + 3 O2 → 2 CO2 + 3 H2O
63
Carboxylic acids
C7.1
64
What do I need to know?
1. understand that the properties of carboxylic acids are due
to the presence of the –COOH functional group;
2. recall the names and formulae of methanoic and ethanoic
acids;
3. recall that many carboxylic acids have unpleasant smells
and tastes and are responsible for the smell of sweaty
socks and the taste of rancid butter;
4. understand that carboxylic acids show the characteristic
reactions of acids with metals, alkalis and carbonates;
5. recall that vinegar is a dilute solution of ethanoic acid.
65
Can you recognise the functional group?
• Circle which of these is a carboxylic acid?
66
Answer
• This is a carboxylic acid
67
Methanoic and Ethanoic
Methanoic acid
Ethanoic acid (VINEGAR)
68
Acids in nature
Many acids are part of life itself, they are known as CARBOXYLIC acids
Organic or CARBOXYLIC
acids are part of life itself
and can be found in many
animals and plants.
69
Reactions of carboxylic acids
Reaction of carboxylic acids
1) Acid + metal  salt + hydrogen
Ethanoic acid + magnesium  magnesium ethanoate + hydrogen
2) Acid + metal oxide  salt + water
Ethanoic acid + copper oxide  copper ethanoate + water
3) Acid + metal carbonate  salt + water + carbon
dioxide
Ethanoic acid + sodium carbonate  sodium ethanoate + water + carbon dioxide
70
Example Question
71
Mark scheme
72
Example question
73
Mark scheme
74
Example question
75
Mark scheme
76
Esters, Fats and Oils
C7.1
77
What do I need to know?
1. Recall the method for producing an ester using
reflux
2. Describe how fats and oils are all types of ester
and explain how margarine is made
3. Explain how bromine water can be used to test
whether a fat is saturated or unsaturated.
78
Making esters
What type of organic chemicals do you need to mix
together?
Can you name the ester made from ethanoic acid
and methanol?
79
Making esters
What type of organic chemicals do you need to mix
together?
• A carboxylic acid and an alcohol with an acid
catalyst
Can you name the ester made from ethanoic acid
and methanol?
• Methyl ethanoate
80
Esters
81
Example question
82
Mark scheme
83
Making esters
Reflux
84
Distillation
Purification
Drying
Reflux apparatus
85
How do I describe reflux for an exam?
1. Mixture heated in flask (1) …
2. with condenser above (1) …
3. so no liquid is lost by evaporation and allows
longer time for the reaction (1)
86
Distillation
87
Describing distillation
1. The mixture is heated
2. At the boiling point of the ester is becomes a
vapour
3. The vapour is condensed in the condenser
4. The liquid is collected
88
Purification
1. Collected ester is shaken in a separating funnel
with distilled water.
2. Impurities dissolve in the water
3. Impurities are tapped off
Ester
89
Drying
1. Solid drying agent is added to the product
2. This could be calcium chloride or sodium
sulphate
3. This removes water from the product
90
Example question
91
Mark scheme
92
Example question
93
Mark scheme
94
Example question
95
Mark scheme
96
Fats and oils
• These are a special type of ester made from
glycerol and fatty acids.
97
Fats and oils
• Removal of water in the condensation reaction
makes a fat or oil
98
Saturated or unsaturated?
• Have you heard these terms on the television?
• Vegetable oil is mostly unsaturated
• Animal fat is mostly saturated
99