Transcript Document
Mathematics Session Properties of Triangle - 1 Session Objectives Session Objective •Sine Rule •Cosine Rule •Projection Rule •Tangents Rule (Napier’s Analogy) •Half Angle Formulae •Area of Triangle •Circumcircle of a Triangle and Its Radius •Incircle of a Triangle and Its Radius •Excircle of a Triangle and Its Radius Introduction A c A B B b C C a BAC A CBA B ACB C BC = a CA = b AB = c (a) A B C (b) a + b > c; b + c > a; c + a > b Sine Rule A B D C In any triangle, sides are proportional to the sines of the opposite angles, i.e. a b c . sin A sinB sinC IF A,B,C are in A.P. then B = 60o Sine Rule Proof :When ABC is an acute angled triangle. Draw AD perpendicular to BC In ABD, A AD sinB AD c sinB ..........(i) AB In ACD AD sinC AD bsinC .......... ii B AC b c D a C Sine Rule From (i) and (ii), we get c sinB = b sinC c b sinC sinB Similarly a c sin A sinC a b c Hence sin A sinB sinC Proved. Question Illustrative Problem If in a ΔABC, sinA sin(A - B) = , sinC sin(B - C) then prove that a2 ,b2 , c2 are in A.P. Solution : sinA sin(A - B) = , sinC sin(B - C) sinAsin(B - C) = sinCsin(A - B) sin - (B + C) sin(B - C) = sin - (A +B) sin(A - B) sin(B + C)sin(B - C) = sin(A +B)sin(A - B) Solution sin2B - sin2C = sin2 A - sin2B ....(i) a b c K sinA sinB sinC 1 2 1 2 2 from (i) 2 (b c ) 2 (a b2 ) K K (b2 c2 ) (a2 b2 ) a2 ,b2 , c2 are in A.P. Proved Cosine Rule or The Law of Cosines b2 c 2 a 2 In any ABC cos A 2bc Proof :- When ABC is an acute angled In BCD CD cosC CD acosC ....(i) BC B c a and in ADB AD cos A AD c cos A ...(ii) AB C D b A Cosine Rule or The Law of Cosines In BCD, BC2 BD2 CD2 BD AC AD 2 2 BD2 AC2 AD2 2AC.AD B AC2 BD2 AD2 2AC.AD AC2 AB2 2AC.AD c a a2 b2 c2 2 bc cos A [form(ii)] b c a cos A 2bc 2 2 2 C D b A Class Test Class Exercise - 1 bc c a ab In a ABC, if , 11 12 13 Pr ove that cos A cosB cosC . 7 19 25 Solution : bc c a ab Let k 11 12 13 b2 c2 a2 Since, cos A 2bc Let us try to find a,b,c in terms of K. a = ……….., b = ……...., c = ……….. b + c = 11k; c + a = 12k; a + b = 13k Adding we get 2 (a + b + c) = 36k Solution a + b + c = 18k a = 7k, b = 6k, c = 5k b2 c 2 a2 36k 2 25k 2 49k 2 cos A 2bc 2 6k 5k cos A Similarly 1 cos A 1 .........(i) 5 7 35 cosB 1 cosC 1 and 19 35 25 35 cos A cosB cosC 7 19 25 Pr oved. Projection Rule In any ABC c = a cosB + b cosA Proof :When ABC is an acute angled . In ACD cos A AD AD bcos A ....(i) AC C In BCD BD BD a cosB ....(2) BC Now c = AB = AD + BD cosB c b cos A acosB Proved. A D B Class Test Class Exercise - 2 In any ABC, prove that cos A cosB cosC a2 b2 c 2 . bcosC c cosB c cos A acosC acosB bcos A 2abc Solution : LHS = cos A cosB cosC bcosC c cosB c cos A acosC acosB bcos A Solution cos A cosB cosC a b c [Applying projection rule] 1 b2 c 2 a2 1 c 2 a2 b2 1 a2 b2 c 2 a 2bc b 2ca c 2ab [Applying cosine rule] b2 c 2 a2 c 2 a2 b2 a2 b2 c 2 2abc a2 b2 c 2 RHS 2abc Pr oved Tangents Rule (Napier’s Analogy) In any ABC tan Proof :- BC bc A cot 2 bc 2 By sine rule, we have a b c k say sinA sinB sinC a k sinA, b k sinB, c k sinC b c k sinB sinC b c k sinB sinC BC BC .sin 2 2 BC BC 2sin .cos 2 2 2cos Tangents Rule (Napier’s Analogy) cot BC BC .tan 2 2 BC A cot tan 2 2 2 A B C A BC tan tan 2 2 BC bc A tan cot 2 bc 2 Proved Half Angle Formulae 1. Formulae for sin A B C , sin , sin 2 2 2 In any ΔABC, let a+b+c = 2s, then A sin 2 s b s c bc Proof :- b2 c 2 a2 We have cos A 2bc b2 c 2 a2 1 2bc A and 2sin 1 cos A 2 2bc b2 c 2 a2 2bc 2 Half Angle Formulae a2 b2 c 2 2bc a b c 2 2bc 2 2bc A a b c a b c 2 sin 2 2bc 2 a b c 2s, we have 2s 2c 2s 2b 2 A 2 sin 2 2bc A sin 2 s c s b bc A 4 s c s b sin 2 4bc A A A sin 0 2 2 2 Proved. 2 Half Angle Formulae A B C 2. Formula for cos , cos , cos 2 2 2 In any ABC,let a b c 2s,then A cos 2 s s a bc A B C 3. Formula for tan , tan , tan 2 2 2 In any ABC,if a b c 2s then A tan 2 s b s c s s a Class Test Class Exercise - 5 In a ABC, if acos2 show that cot C A 3b c cos2 , 2 2 2 A B C , cot , cot are in AP. 2 2 2 Solution : C 2 A 3b c cos Given that acos 2 2 2 2 s(s c) s(s a) 3b a. c. ab bc 2 s 3b 2s a c 2 b Solution s 3b .b 2s 3b b 2 a + b + c = 3b a + c = 2b ... (i) We have to prove cot A B C , cot , cot are in A.P. 2 2 2 A c B i.e., cot cot 2cot 2 2 2 A C L.H.S cot cot 2 2 (ii) Solution s(s a) s(s c) (s b) (s c) (s a) (s b) s(s a) s(s c) s (s a) (s b) (s c) s (s a) (s b) (s c) s(s a) s(s c) s 2s 2b [from (i)] B 2cot R.H.S 2 2s(s b) Area of a Triangle (a)The area of ABC is given by 1 1 1 bc sin A ca sinB ab sinC 2 2 2 Proof :Here BC = a, AB = c, AC = b A 1 Area of ABC base height 2 B D C Area of a Triangle 1 BC AD....(i) 2 sinB AD AD sinB AB C In ABD AD c sinB From (i) 1 a c sinB 2 Proved Area of a Triangle (b) Hero’s formula s s a s b s c Proof :- 1 bc sin A 2 1 A A bc 2sin cos bc 2 2 2 s b s c s s a bc bc s s a s b s c Class Test Class Exercise - 6 In any ABC, if a b c , 2 8 then prove that tan A , where 15 area of triangle. 2 Solution Given a2 (b c)2 a2 b2 c 2 2bc b2 c 2 a2 2bc 1 2bc cos A 2bc bc sin A 2 b2 c2 a2 1 and bc sin A cos A 2bc 2 4bc cosA + bc sinA = 4bc 4cosA + sinA = 4 Solution A A A 4 1 2sin2 2 sin cos 4 2 2 2 A A cos 4sin 0 2 2 A A A Either sin 0 or cos 4 sin 0 2 2 2 A 1 2 tan 2 A 2 4 8 where sin 0 A 0 or 2 Now, tan A A 1 15 2 1 tan2 1 2sin A 2 2 which is not possible, since it in an angle of . A A when cos 4 sin 0 2 2 A 1 tan 2 4 16 Circumcircle of a Triangle and its Radius A F B R R O E R D Circum radius = R C Circumcircle of a Triangle and its Radius In any ABC a b c (i) 2R sin A sinB sinC abc (ii) R 4 Incircle of a Triangle and its Radius A A 2 F A 2 r r E r i B D In Radius = r C Incircle of a Triangle and its Radius In any ABC (i) r s A B C (ii) r s a tan s b tan s c tan 2 2 2 B C A C B A a sin sin b sin sin c sin sin 2 2 2 2 2 2 (iii) r A B C cos cos cos 2 2 2 A B C (iv) r 4R sin sin sin 2 2 2 Radii of Ex-circle in Terms of Sides and Angles A B C I1 Ex. Radius is = r1 Radii of Ex-circle in Terms of Sides and Angles In any ABC (i) r1 ; r2 ; r3 sa sb sc A B C (ii) r1 s tan ; r2 s tan ; r3 s tan 2 2 2 B C C A A B acos cos bcos cos c cos cos 2 2; r 2 2 r 2 2 (iii) r1 2 3 A B C cos cos cos 2 2 2 Radii of Ex-circle in Terms of Sides and Angles A B C (iv) r1 4R sin cos cos 2 2 2 A B C r2 4Rcos sin cos 2 2 2 A B C r3 4R cos cos sin 2 2 2 [Proof of these results are same as INCIRCLE and try yourself] Class Tests Class Exercise - 3 In a if b + c = 3a, then the value of B C cot cot is 2 2 (a) 1 (b) 2 (c) 3 Solution :b + c = 3a = k (sinB + sinC) = 3k sinA 2 sin BC BC A A .cos 3.2 sin cos 2 2 2 2 A BC BC A cos cos 3 cos .cos 2 2 2 2 (d) 3 Solution A BC A B C 2 2 2 2 cos B C B C cos sin sin 3 2 2 2 2 2cos cot B C B C cos cos sin sin 2 2 2 2 B C B C cos 4 sin sin 2 2 2 2 B C cot 2 2 2 A (note : cot 0) 2 Ans : b Class Exercise - 4 In a ABC, if cos A cosB cosC a b c and the side a = 2 units, then area of the ABC, is (a) 1 sq. units (c) 3 sq. units 2 (b) 2 sq. units (d) 3 sq. units Solution Given cos A cosB cosC a b c cos A cosB cosC k sin A k sinB k sinC By sine rule cot A cotB cotC A=B=C ABC is equilateral Area of equilateral 3 4 4 3 4 3 sq. units. side 2 Ans : d Class Exercise - 7 ABC, sides a, b, c are in AP, then r1, r2 , r3 are in (where r1, r2 , r3 are the ex- If in a radii of the ABC, ) (a) AP (b) GP (c) HP (d) None of these Solution Since a.b.c are in AP b a c b (s a) (s b) (s b) (s c) (s a) s b s b s c 1 1 1 1 r1 r2 r2 r3 1 1 1 , , are in A.P r1 r2 r3 r1, r2, r3 are in H.P Ans : c Class Exercise - 8 If a circle is inscribed in an equilateral triangle of side a, then area of the square inscribed in the circle is a2 (a) 6 2a2 (c) 5 a2 (b) 3 2a2 (d) 3 Solution 1 3a s a b c 2 2 3 2 a 4 r 3 2 2 a a ...........(i) s 4 3a 2 3 If x is the length of a side of the square inscribed in circle of the triangle, then A x2 x2 diameter 2 a2 2x 2r x 2r [from(i)] 6 a2 Area of the square Ans : a 6 2 2 2 2 B C Class Exercise - 9 If be the length of perpendiculars drawn from the vertices of a triangle to the opposite side, then (a) p1 p2 p3 abc (c) p1 p2 p3 8R (b) p1 p2 p3 a2 b2 c 2 (d) p1 p2 p3 a2 b2 c 2 8R3 Solution Here AD p1, BE p2, CF p3 and 1 1 1 ap1 bp2 c p3 2 2 2 2 2 2 p1 , p2 , p3 a b c p1 p2p3 2 2 2 . . a b c A E 8 abc 3 3 a 2 b 2c 2 8R 3 8 abc . abc 4R Ans : d R F abc 4 B D C Class Exercise - 10 If in a ABC, a2 b2 a b 2 2 sin A B sin A B , prove that it is either a right angled or an isosceles triangle, can it be right angled isosceles triangle? Solution Let a b c k sin A sinB sinC sin A B 2 2 sin A B a b a2 b2 sin sin A B A sin B sin A B k 2 sin2 A sin2 B k2 2 2 sin C sin A B sin2 A sin2 B sinC sin A B sin A sin B 2 2 sin A B sin A B sin A B sin C sin A B sinC sin2 A sin2 B sin A B sin A B Solution sinC 1 sin A B 2 0 2 sin A sin B sinC Either sin A B 0 or Either A B 0 Either A B or 1 sinC 0 2 2 sinC sin A sin B or sin2 A sin2 B sin2 C 0 a2 k 2 b2 k 2 c2 k 2 0 Triangle is either isosceles or right angled. Proved. Thank you