Transcript Document
Drill Exercise
A linear transformer couples a load consisting of a 360 Ω resistor in series with a 0.25 H
inductor to a sinusoidal voltage source, as shown. The voltage source has an internal
impedance of 184+j0 Ω and a maximum voltage of 245.20 V, and it is operating at 800
rad/s. The transformer parameters are R1 = 100Ω, L1 = 0.5 H, R2 = 40Ω, L2 = 0.125 H,
and k = 0.4. Calculate :
a). The reflected impedance,
b). The primary current, c). The secondary current, and
d). The average power delivered to the primary terminals of the transformer.
Ideal Transformer
Example
4:1
ideal
60Ω
500 A
rm s
40Ω
20Ω
a). Find the average power delivered by the sinusoidal current source in the circuit
shown.
b). Find the average power delivered to the 20 Ω resistor.
60Ω
+
4:1
V1
-
+
30000V
rm s
V2
ideal
40Ω
i1
20Ω
Solution
a).
+
i2
300 60I1 V1 20I1 I 2
0 20I 2 I1 V2 40I 2
V2 14 V1
I2 4I1
The solutions for V1, V2, I1 and I2 are
V1 260V rm s
V2 65 V rm s
I1 0.25 A rm s
I 2 1.0 A rm s
The voltage across the 5 A current source is
V5 A V1 20I1 I 2
260 200.25 1 285V rms
The average power associated with the current source is
P 2855 1425W
b).
To find the average power delivered to the 20Ω resistor
I 20 I1 I 2 0.25 1 1.25 A rm s
P20 1.25 20 31.25 W
2
Drill Exercise
Find the average power delivered to the 4 kΩ resistor in circuit shown.
10Ω
1:2.5
1:4
4kΩ
10000V
rm s
ideal
ideal
Equivalent Circuits for Magnetically Coupled Coils
di1
di2
v1 L1
M
dt
dt
di1
di2
v2 M
L2
dt
dt
Rangkaian Ekivalen model T
R1
a
+
v1
b
L1-M
i1
M
L2-M
c
i2
+
v2
d
R2
Rangkaian Ekivalen model
R1
L1 L2 M 2
M
a
i1
+
v1
b
L1L2 M 2
L1 M
L1L2 M 2
L2 M
c
+
v2
-
d
R2
i2
Example
j100
500
200
100
j1200
+
I1
V1
j 3600
j1600
800
+
I2
V2
j 2500
0
3000 V
-
a.
-
6H
1H
3H
For the polarity dots shown in this example, M carries a value of
+3 H in the T equivalent circuit.
L1 M 9 3 6 H
L2 M 4 3 1H
M 3H
At an operating frequency of 400 rad/s,
j2400
j400
j1200
V 300
V
V
0
700 j 2500 j1200 900 j 2100
V 136 j8 136,24 3,37 V
o
300 136 j8
I1
63,25 71,57o m Arm s
700 j 2500
136 j8
I2
59,6363,43o m Arm s
900 j 2100
b). When the polarity dot is moved to the lower terminal of the
secondary coil, M carries a value of -3 H in the T equivalent
circuit.
L1 M 9 3 12H
L2 M 4 3 7 H
j4800
j2800
M 3H
At an operating frequency of
400 rad/s,
-j1200
I1 63,25 71,57 mArms
o
I 2 59,63 116,57 mArms
o
V 300
V
V
0
700 j 4900 j1200 900 j 300
V 8 j 56 56.57 98.130 V rm s
300 8 j 56
I1
63.25 71.57 m A rm s
700 j 4900
8 j 56
I2
59.63 116.570 m A rm s
900 j 300
Drill Exercise
A linear transformer couples a load consisting of a 360 Ω resistor in series with a
0.25 H inductor to a sinusoidal voltage source, as shown. The voltage source has
an internal impedance of 184+j0 Ω and a maximum voltage of 245.20 V, and it is
operating at 800 rad/s. The transformer parameters are R1 = 100Ω, L1 = 0.5 H,
R2 = 40Ω, L2 = 0.125 H, and k = 0.4. Calculate :
a). The reflected impedance,
b). The primary current, c). The secondary current, and
d). The average power delivered to the primary terminals of the transformer.
Use the T-equivalent circuit.
15Ω
j50Ω
+
j20Ω
256∠0o V
(rms)
80Ω
j32Ω
V
0
-
Calculate :
a). The rms magnitude of V0
b). The average power dissipated in the 80 Ω resistor.
+
-
20
Ω
j35Ω
40
j50Ω
15
Ω
Ω
j45
j80Ω
Ω
ZL
480∠0
o V
(rms)
The impedance ZL in the circuit shown is adjusted for maximum
average power transfer to ZL. The internal impedance of the
sinusoidal voltage source is 20+j35 Ω.
What is the maximum average power delivered to ZL?
15mH
20mH
25mH
88Ω
200Ω
vg
Find the average power delivered to the 200 Ω resistor in
the circuit shown if
vg= 424 cos 8000t V