Transcript Document

Complexiteit
de rol van netwerken (1)
Chris Snijders
www.tue-tm.org/complexity
Chris Snijders – Complexiteit: Netwerken (1)
2
Networks of the Real-world (1)

Biological networks





metabolic networks
food web
neural networks
gene regulatory networks
Language networks

Yeast protein
interactions
Semantic network
Semantic networks

Software networks

…
Language network
Software network
Chris Snijders – Complexiteit: Netwerken (1)
Networks of the Real-world (2)

Information networks:




Social networks: people + interactions






World Wide Web: hyperlinks
Citation networks
Blog networks
Organizational networks
Communication networks
Collaboration networks
Sexual networks
Collaboration networks
Florence families
Karate club network
Technological networks:





Power grid
Airline, road, river networks
Telephone networks
Internet
Autonomous systems
Friendship network
Collaboration network
Chris Snijders – Complexiteit: Netwerken (1)
Gebruiksaanwijzing

Veel voorbeelden uit de sociale netwerk hoek

Mede: aanloop voor volgende netwerkcollege over
biologische netwerken

(Soms slides in het Engels)

c.c.p.snijders _/at\_ gmail.com
Several slides used from, e.g., Leskovec and
Faloutsos , Carnegie Mellon, and others (see
www.insna.org)
Chris Snijders – Complexiteit: Netwerken (1)
Netwerken en complexiteit

Netwerken zijn een voorbeeld van hoe de samenhang van
elementen mede van belang is (en niet alleen de
eigenschappen van de elementen)

Het gedrag van een netwerken kan typisch niet-lineair zijn,
zelfs als de onderdelen ‘lineair gedrag’ vertonen


Grote netwerken  complexiteit op basis van omvang van de
berekeningen
Netwerktheorie: aanloop (voor volgende week)
Chris Snijders – Complexiteit: Netwerken (1)
Two approaches to network theory

Bottom up (let’s try to understand network characteristics and
arguments)

Top down (let’s have a look at many networks, and try to
deduce what is happening from the observations)
as in “small world networks”
Chris Snijders – Complexiteit: Netwerken (1)
7
Netwerken leiden tot non-lineariteiten
(en dat maakt alles lastig)
Chris Snijders – Complexiteit: Netwerken (1)
8
Chris Snijders – Complexiteit: Netwerken (1)
De structuur van de omgeving doet er
toe, niet alleen de eigenschappen van
de elementen zelf
“Bottom up” voorbeelden
Chris Snijders – Complexiteit: Netwerken (1)
10
Network analysis in HIV/AIDS research
dataverzameling?
Chris Snijders – Complexiteit: Netwerken (1)
11
An example in crime: 9-11 Hijackers Network
SOURCE: Valdis Krebs
http://www.orgnet.com/
Chris Snijders – Complexiteit: Netwerken (1)
(Sept ‘09 on SOCNET list)
Chris Snijders – Complexiteit: Netwerken (1)
Chris Snijders – Complexiteit: Netwerken (1)
14
Chris Snijders – Complexiteit: Netwerken (1)
15
It's a science ...
www.insna.org
Chris Snijders – Complexiteit: Netwerken (1)
SNA needs dedicated software
(for data collection, data analysis and visualization)
http://www.insna.
org/software/soft
ware_old.html
Chris Snijders – Complexiteit: Netwerken (1)
17
Twee klassieke studies in de sociale
netwerktheorie
Chris Snijders – Complexiteit: Netwerken (1)
18
Mark Granovetter: The strength of weak ties

Dept of Sociology, Harvard, “The strength of weak ties” (1973)

How do people find a new job?

interviewed 100 people who had changed jobs in the Boston
area.

More than half found job through personal contacts (at odds
with standard economics).

Those who found a job, found it more often through “weak
ties”.
Chris Snijders – Complexiteit: Netwerken (1)
M. Granovetter: The strength of weak ties (2)

Granovetter’s conjecture: strong ties are more likely to contain
information you already know

According to Granovetter: you need a network that is low on
transitivity
Chris Snijders – Complexiteit: Netwerken (1)
20
M. Granovetter: The strength of weak ties (3)
Let’s try to understand this a bit better ...

Coser (1975) bridging weak ties: connections to groups outside own clique
(+ cognitive flexibility, cope with heterogeneity of ties)
Empirical evidence



Granovetter (1974)
28% found job through weak ties
17% found job through strong ties
Langlois (1977)
result depends on kind of job
Blau: added arguments about high status people connecting to a more
diverse set of people than low status people
Chris Snijders – Complexiteit: Netwerken (1)
21
Ron Burt:
Structural holes versus network closure as social capital
structural holes beat network closure
when it comes to predicting which actor
performs best
University of
Chicago,
Graduate School
of Business
Chris Snijders – Complexiteit: Netwerken (1)
Ron Burt: Structural holes versus network closure as social capital (2)
A
B
1
7
3
2
James
6
Robert
5
C
 Robert’s network is rich in structural holes
 James' network has fewer structural holes
4
9
8
D
Chris Snijders – Complexiteit: Netwerken (1)
Ron Burt: Structural holes versus network closure as social capital (3)

Robert will do better than James, because of:
 informational benefits
 “tertius gaudens” (entrepreneur)
 Autonomy

It is not that clear (in this talk) what precisely constitutes a structural hole,
but Burt does define two kinds of redundancy in a network:


Cohesion: two of your contacts have a close connection
Structurally equivalent contacts: contacts who link to the same third
parties
Chris Snijders – Complexiteit: Netwerken (1)
Four basic (“bottom up”) network arguments

Closure competitive advantage stems from managing risk; closed networks enhance
communication and enforcement of sanctions

Brokerage competitive advantage stems from managing information access and
control; networks that span structural holes provide the better opportunities

Contagion information is not a clear guide to behavior, so observable behavior of
others is taken as a signal of proper behavior.
[1] contagion by cohesion: you imitate the behavior of those you are connected
to
[2] contagion by equivalence: you imitate the behavior of those others who are
in a structurally equivalent position

Prominence information is not a clear guide to behavior, so the prominence of an
individual or group is taken as a signal of quality
Chris Snijders – Complexiteit: Netwerken (1)
25
“Top down” voorbeelden
Six degrees of separation
&
The small world phenomenon
Chris Snijders – Complexiteit: Netwerken (1)
26
Milgram´s (1967) original study




Milgram sent packages to a couple hundred people in
Nebraska and Kansas.
Aim was “get this package to <address of person in Boston>”
Rule: only send this package to someone whom you know on a
first name basis. Try to make the chain as short as possible.
Result: average length of chain is only six
“six degrees of separation”
Chris Snijders – Complexiteit: Netwerken (1)
27
Milgram’s original study (2)

An urban myth?
Milgram used only part of the
data, actually mainly the ones
supporting his claim
 Many packages did not end up
at the Boston address
 Follow up studies all small scale

Chris Snijders – Complexiteit: Netwerken (1)
28
The small world phenomenon (cont.)

“Small world project” has been testing this assertion (not anymore, see
http://smallworld.columbia.edu)

Email to <address>, otherwise same rules. Addresses were American
college professor, Indian technology consultant, Estonian archival
inspector, …

Conclusion:
 Low completion rate (384 out of 24,163 = 1.5%)
 Succesful chains more often through professional ties
 Succesful chains more often through weak ties (weak ties mentioned
about 10% more often)
 Chain size 5, 6 or 7.
Chris Snijders – Complexiteit: Netwerken (1)
The Kevin Bacon experiment –
Tjaden (+/- 1996)
Actors = actors
Ties = “has played in a movie with”
Chris Snijders – Complexiteit: Netwerken (1)
30
The Kevin Bacon game
Can be played at:
http://oracleofbacon.org
Kevin Bacon
number
(data might have changed by now)
Jack Nicholson:
Robert de Niro:
Rutger Hauer (NL):
Famke Janssen (NL):
Bruce Willis:
Kl.M. Brandauer (AU):
Arn. Schwarzenegger:
1
1
2
2
2
2
2
(A few good men)
(Sleepers)
[Jackie Burroughs]
[Donna Goodhand]
[David Hayman]
[Robert Redford]
[Kevin Pollak]
Chris Snijders – Complexiteit: Netwerken (1)
A search for high Kevin Bacon numbers…
3
2
Chris Snijders – Complexiteit: Netwerken (1)
Bacon / Hauer / Connery
(numbers now changed a bit)
Chris Snijders – Complexiteit: Netwerken (1)
The best centers… (2009)
(Kevin Bacon at place 507)
(Rutger Hauer at place 48)
Chris Snijders – Complexiteit: Netwerken (1)
“Elvis has left the building …”
Chris Snijders – Complexiteit: Netwerken (1)
“Small world networks”
-
short average distance between pairs …
-
… but relatively high “cliquishness”
Chris Snijders – Complexiteit: Netwerken (1)
We find small world networks in all kinds of places…

Caenorhabditis Elegans
959 cells
Genome sequenced 1998
Nervous system mapped
 small world network

Power grid network of Western States
5,000 power plants with high-voltage lines
 small world network
Chris Snijders – Complexiteit: Netwerken (1)
Strogatz and Watts









6 billion nodes on a circle
Each connected to nearest 1,000 neighbors
Start rewiring links randomly
Calculate “average path length” and “clustering” as the
network starts to change
Network changes from structured to random
APL: starts at 3 million, decreases to 4 (!)
Clustering: probability that two nodes linked to a common
node will be linked to each other (degree of overlap)
Clustering: starts at 0.75, decreases to 1 in 6 million (=zero)
Strogatz and Wats ask: what happens along the way?
Chris Snijders – Complexiteit: Netwerken (1)
Strogatz and Watts (2)
“We move in tight circles
yet we are all bound
together by remarkably
short chains” (Strogatz,
2003)
Chris Snijders – Complexiteit: Netwerken (1)
Small world networks are (often) “scale free” (not
necessarily vice versa)
Chris Snijders – Complexiteit: Netwerken (1)
Find the underlying DYNAMICS
that match the found STRUCTURE

Scientists are trying to connect the structural properties …
Scale-free, small-world, locally clustered, bow-tie, hubs and
authorities, communities, bipartite cores, network motifs, highly
optimized tolerance

… to the processes that might generate them
(Erdos-Renyi) Random graphs, Exponential random graphs, Smallworld model, Preferential attachment, Edge copying model,
Community guided attachment, Forest fire models, Kronecker
graphs
Chris Snijders – Complexiteit: Netwerken (1)
The BIG question:
How do scale free (and: small world) networks arise?

Perhaps through “preferential attachment”
< show NetLogo simulation here>
Critique to this approach:
it ignores ties created by those in the network
Chris Snijders – Complexiteit: Netwerken (1)
42
One final example
“The tipping point” (Watts*)


Consider a network in which each node determines whether or
not to adopt, based on what his direct connections do.
Nodes have different thresholds to adopt
(random networks)

Question: when do you get cascades of adoption?

Answer: two phase transitions or tipping points:
 in sparse networks no cascades
 as networks get more dense, a sudden jump in the likelihood
of cascades
 as networks get more dense, the likelihood of cascades
decreases and suddenly goes to zero
* Watts, D.J. (2002) A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences USA 99, 5766-5771
Chris Snijders – Complexiteit: Netwerken (1)
43
Open problems and related issues
Applications to
 Spread of diseases (AIDS, foot-and-mouth disease, computer
viruses), fashions, knowledge
 ...
Small-world / scale-free networks are:
 Robust to random problems/mistakes
 Vulnerable to selectively targeted attacks
Computability: SNA requires computer power, given larger
networks
Chris Snijders – Complexiteit: Netwerken (1)
44
Social network basics
Networks consists of dots and lines (or arrows) between the dots
Dots=nodes=objects=vertices
Lines=relations=ties=edges
You can have more than one kind of dots (e.g., man/women)
Relationships can have directions and weights
Mathematically, this can be presented as a (adjacency) matrix
Chris Snijders – Complexiteit: Netwerken (1)
45
Basic network measurements (there are many more)
At the node level
indegree (number of connections to ego [sometimes proportional to size])
outdegree (number of connections going out from ego)
centrality
betweenness
At the network level
density (# relations / possible relations)
centrality
average path length
scale-free (distr. of degrees follows a power law)
small-world (low aver. path length and cliques)
Chris Snijders – Complexiteit: Netwerken (1)
46
Netwerken en complexiteit

Netwerken zijn een voorbeeld van hoe de samenhang van
elementen mede van belang is (en niet alleen de
eigenschappen van de elementen)

Het gedrag van een netwerk als geheel kan typisch niet-lineair
zijn, zelfs als de onderdelen ‘lineair gedrag’ vertonen


Grote netwerken  complexiteit op basis van omvang van de
berekeningen
Netwerktheorie: aanloop (voor volgende week)
Chris Snijders – Complexiteit: Netwerken (1)