Theory of Slow Non-Equilibrium Relaxation in Amorphous
Download
Report
Transcript Theory of Slow Non-Equilibrium Relaxation in Amorphous
Theory of Slow Non-Equilibrium
Relaxation in Amorphous Solids
at Low Temperature
Alexander Burin
Tulane, Chemistry
Outline
• Experimental background and theory goals
• Pseudo-gap in the density of states (D.o.S.)
• Break of equilibrium and induced changes
in D.o.S.
• Non-equilibrium dielectric constant and
hopping conductivity within the TLS model
• Conclusions
• Other mechanisms of non-equilibrium
dynamics
Experimental background
EDC
+
ln(t)
’
Osheroff and coworkers
(1993-2007)
’’
ln(t)
ln(t)
Ovadyahu and coworkers
(1990-2007), Grenet and
coworkers
(2000-2007),
Popovich and coworkers
(2005-2007)
Goals
• Interpret experimental observations in terms of
the non-equilibrium raise of the density of states
of relevant excitations (TLS or conducting
electrons) with its subsequent slow relaxation
backwards
• The changes in the density of states are
associated with the “Coulomb gap” effects
induced by TLS – TLS or TLS – electron longrange interactions
Non-equilibrium dynamics
-
External force raises density of
states for relevant excitations
Slow relaxation lowers D. o. S.
back to equilibrium
Case of study: TLS in glasses
(Burin, 1995)
Two interacting TLS
Hˆ 1S1z 2 S 2z U12 S1z S 2z
Correction to the density of states (single TLS
excitations)
No interaction:
E1 | 1 |
With interaction:
E1 | 1 U S |
z
12 2
Correction to TLS D. o. S.
No interaction:
P( E) n ( E 1 ) ng0 P0
P1 ( E ) ( E | 1 U12 S 2z |)
With
interaction:
U12 / 2
exp 2 cosh 1
( E | 1 U12 / 2 |)
2T
2T
2
1 U12 / 2
2
1 U12 / 2
exp cosh
exp
cosh
2T
2T
2T
2T
2
1 U12 / 2
exp
cosh
( E | 1 U12 / 2 |)
2T
2T
U12 / 2
2
1 U12 / 2
exp 2 cosh 1
exp
cosh
2T
2T
2T
2T
Change in D. o. S.:
P( E ) g02 d1 d 2 ( P1 ( E) P0 ( E ))
P ( E ) g 02 d1 d 2 ( P1 ( E ) P0 ( E ))
E U12
E U 12
cosh 2T cosh 2T
2T ln
2 E
cosh
2T
U12>>T
P(E) 2g02 | U12 | E | U12 | E
Explanation of D. o. S. reduction
(Efros, Shklovskii, 1975)
E2=2
E1=E
E12=E+2-U12
0<2<U12-E
Instability
PI~g0(U12-E), P ~-PPI
Total correction to the D. o. S.
Ptot ( E ) 2 g
2
0
2 ,|U12 | T
| U12 | E | U12 | E
This correction should be averaged over TLS statistics
(Anderson, Halperin, Warma; Phillips, 1972)
P
P (, 0 )
,
0
hˆ TLS -Sz 0 S x .
Sz=1/2
Sz= -1/2
0
Average correction to the D. o. S.
Ptot ( E ) 2 g 02
P
2
0
(U 0 /( E T ))1 / 3
a
2 ,|U12 | T
| U12 | E | U12 | E
U0
d 0
U max
4
E
dr 3
P0 P0U 0 ln
ln
r 0 min 0
3
E T 0 min
E
Since P0U0~10-3 we have P << P.
Change in D. o. S due to external
DC field application
Energy shift E = -FDC/, ~3D, FDC~10MV/cm, E~7K >> T
Only TLS with E<E can be removed out of equilibrium
EDC
4
E
Ptot ( E, t 0)
P0 P0U 0 ln
ln
3
( E T ) 0 min
Time dependent D. o. S.
At time t only slow TLS’s contributes
1
1 2 t
A 0 (t )
EDC
0 (t )
4
Ptot ( E , t 0)
P0 P0U 0 ln
ln
3
( E T ) 0 min
EDC
t max
2
P0 P0U 0 ln
ln
3
( E T )
t
Calculation of dielectric constant
(adiabatic response at low temperature)
hˆ TLS -( Fμ)Sz 0 S x ,
2 2
0
tanh
2T
2
3
max
2
2 ( Fμ) 2 2 μ 2
0
0
dF 2
3 2
20
max
d
0
0
d 0
20
( P0 P)
0
2 20
P0 2 max
ln
(t )
3
T
3/ 2
3
2
2 2
0
tanh
2T
2 2
0
tanh
2T
Non-equilibrium dielectric constant
2P0 2
P0U 0
9
t max
ln
t
E DC / E DC /
d
0
P0 2
9
0
d 0
0 2 20
2
0
3/ 2
2
2
EDC
0
ln
tanh
2T
t max 2 EDC
P0U 0 ln
ln
~ 0.01
t
T
Non-equilibrium conductivity
(Burin, Kozub, Galperin, Vinokur, 2007)
EF
Variable range hopping
• Defined by charges with energy h>T (h~Ta,
a=3/4, Mott; a=1/2, Efros, Shklovskii)
• Hopping to the distances rh~1/(gh)1/d (d –
problem dimension)
• Conductivity can be approximated as
~ exp h / T ~ exp rh / a , 0 ~ 104
0
h g ( h ) g ( h ) 0
~
~
ln
T
g
g
Non-equilibrium D. o. S. and
conductivity
g ( h , t )
g
2 P0 | U12 | h | U12 | h
2
( e / h )
1/ 2
P0
2
a
e
dr 2
r
t max
t
1
2
P0 e e tmax
ln
2
.
h t
d
1
2
P0 e e h tmax
2
ln
.
h 2T t
Comparison with experiment
• Change in conductivity (logarithmic relaxation
rate)
1
2
P0 e e h
d ln
2
~ 102
d ln t
h 2T
P0 2
0
~ 5 10 , ~ 1D, h ~ T ln ~ 3meV
4
Estimate agrees with experiment !
Width of the cusp VG
EF (VG ) ~ h ~ 3meV
Estimate agrees with the experiment!
(Vaknin, Ovadyahu, Pollak, 2002)
Suggestion
• Investigate glassy properties in related
materials, i. e. temperature dependence
of sound velocity and/or sound attenuation
and dielectric constant temperature
dependence at T<1K.
Conclusions
• TLS model can be used to interpret nonequilibrium relaxation in glasses and
doped semiconductors
• The
non-equilibrium
relaxation
is
associated with the evolution of the
density of states affected by the long –
range interaction (Coulomb or dipolar gap)
Acknowledgement
• Support by Louisiana Board of Regents,
contract no. LEQSF (2005-08)-RD-A-29)
• Tulane
University
Research
and
Enhancement Funds
• To organizers of this extraordinary
workshop for inviting me
Interaction unrelated non-equilibrium
dielectric constant
(Yu and coworkers, 1994; Burin 1995)
P0 2
( EDC )
3
max
max
d
0
0 LZ
d 0
20
0 ( EDC ) 2 20
3/ 2
2 2
0
tanh
2T
P0 2 max P0 2 max
EDC
ln
ln
tanh
3
3
T
2T
LZ
Theory predicts a huge non-equilibrium effect
comparable to the equilibrium one
Time dependence
P0 2
( EDC , t )
3
2 2
0
tanh
2T
max
max
d
0
0 LZ
d 0
20
0 ( EDC ) 2 20
3/ 2
2
( E ) 2 2
DC
0
0
1 exp Bt
tanh
2
2
2T
0
P0 2 max P0 2 T
ln
ln
3
3
T
LZ
2
0
exp Bt
2
2
0
1
E
tanh DC
1/ 2
2T (1 BTt)
Power law relaxation is associated with
interaction stimulated dynamics (Burin, Kagan,
1994) only so one can study it. Better materials
are those which have no nuclear quadrupole, i. e.
mylar.