Transcript Slide 1

Capri Spring School on Transport in Nanostructures, 2-9 April 2006
Current Noise
in Non-chiral Luttinger Liquids:
Appearance of Fractional Charge
F. Dolcini (Scuola Normale Superiore, Pisa)
in collaboration with
I. Safi (Lab. Phys. Solides, CNRS, Orsay (Paris))
B. Trauzettel (Universiteit Leiden)
H. Grabert (Universität Freiburg)
Outline
 Quantum wires: experimental realizations and
theoretical modelling
 Role of e- - e- interaction (Luttinger Liquid)
 Results:
 Shot Noise
 Finite Frequency Noise
 Discussion and Conclusions
Physical system
quantum wire (1D)
L
metallic lead
impurity
Edge States
FQHE
systems
(chiral LL)
SWNT
(Single
carbon
NanoTubes)
Cleaved
edgeinWall
overgrowth
on
GaAs-AlGaAs
metallic lead
Transport in ballistic wires
Impurity (barrier)
ballistic conductor
R

ni= 1

nR= R
T=1-R

nT= T
(nT)2 = T (1-T)
Average current:
I  j(t )

Fluctuations:
(Noise)
S(ω)   dt ei t j(t)j( 0 )
j = j - 
j

Shot Noise: S(  V)
1) Non-interacting electrons
Scattering Matrix Formalism (M.Büttiker’s lectures)
Impurity (barrier)
ballistic conductor
T=1-R
R

ni= 1

nT= T

nR= R
(nT)2 = T (1-T)
for a weak impurity T1
Blanter, Büttiker, Phys. Rep. 336,1 (00)
e2
S(ω  V)  2 eV T(1 T)
h
S  2 e IBS
Noise due to incoherent back-scattering of electrons
-
-
2) 1-D wires: The effect of e - e interaction
in D=3
m  m*
FERMI LIQUID:
Single-particle picture
is not destroyed !!
εk  ε0k
τk = finite life
quasi-particles
in D=1
Fermi-Liquid theory breaks-down !
In D=1 there’s no geometrical room for
single particle excitations!
Only collective excitations
(Luttinger Liquid Theory)
R , L electron operators


H  ivF  dx :  R  x R  L  x L :

interaction
U
  dx :  R2 ( x) :  :  L2 ( x) :  2  R ( x)  L ( x)
2

quartic in 
R / L ( x)  : R/ L  R / L :
Luttinger Liquid Theory: Pass to a new basis
 (x)  e
i ΦR (x) 4π
 (x)  e
i ΦL (x) 4π

R

L
Plasmonic excitations
re-write the Hamiltonian:
  Φ    Φ 

H  vF
2
x


R
2
x
L
 dx

H0
Hint


U
2
2
 xΦR    xΦL   2  xΦR   xΦL dx


2π 
Advantage: everything is quadratic now !
diagonalize with a rotation!
introduce the fields
~
1
ΦR  (1 g) ΦR  1 gΦL 
2
~
1
ΦL  1 gΦR  1 gΦL 
2
~
H  v


 
~
 ~ 2
   xΦR   xΦL
  dx
2
where:
g
1
U
1
vF
1
g→1
no interaction
g→0
interaction → ∞
ΦR , ΦL
(coupled)
R (x)
 (x)  e

L
(decoupled)
new modes:
electron operators
 R (x)  e i Φ
~ ~
ΦR , ΦL
4π
i ΦL (x) 4π
~
 R (x)  e
i ΦR (x) 4π
 L (x)  e
 i ΦL (x) 4π
~
{ R/L(x) , R/L(y) } = 0
R(x) R(y) = R(x) R(y) ei g sgn(x-y)
[R/L(x) , (y) ] = e R/L (x) (x-y)
[ R/L(x) , (y) ] = ge

 (x) (x-y)
R/L


Backscattering: R L
ge
interaction
Is the fractional charge e*=ge observable ?
Indirectly: measures of the interaction strength g
 Temperature dependence of the linear Conductance:
G  T
Bockrath et al. Nature 397, 598 (99); Yao et al. Nature 402, 273 (99) ;
Postma et al. Science 293, 76 (01) ; Ausländer, Phys. Rev. Lett. 84, 1764 (00) ;
 Displacement currents induced in the gate
Blanter, Hekking and Büttiker, Phys. Rev. Lett. 81, 1925 (98)
 Oscillations in the I-V Characteristics
Peça and Balents, Phys. Rev. B 68, 205423 (03)
Dolcini et al. Phys. Rev. Lett. 91, 266402 (03)
 Is it possible to observe directly the fractional
charge of the collective excitations ?

How is the relation
by the interaction ?
S  2 e IBS modified
Fractional charge in chiral Luttinger Liquids
Lectures by C.Glattli
Edge States in FQHE device
 = filling factor = 1/3
g =  = 1/3
weak back-scattering limit:
 Theory (Kane & Fisher PRL 94)
 Experiments
(de Picciotto et al. Nature 97,
Saminadayar et al. PRL 97 )
S (V  ) = 2 e* IBS
e* = g e
fractional charge
OPEN QUESTION: and for non-chiral LL (e.g. SWNT) ?
chiral
pair of chiral LL
vs
non-chiral
non-chiral LL
R
R
L
L
e2
G g
h
S (  V) = 2 e g IBS
2 tuned separately
 R , L cannotebe
G
h
 sensitive to presence
of boundaries
S (finite
 V)length
= ? effects
Model
for an interacting (non–chiral) quantum wire
1
g
1
U0
π vF
x
g→1
no interaction
g→0
interaction → ∞
Inhomogeneous
Luttinger Liquid
Safi & Schulz, PRB (95)
Maslov & Stone, PRB (‘95)
Ponomarenko, PRB (95)
L
Effect of the finite size of the wire
L
ħ L = ħ vF/L ~ meV
Ballistic frequency
2.0
T=0
g=0.25
IBS
1.5
I(V) oscillates with period ħ L
1.0
0.5
0.0
0
5
10
15
eV / L
20
25
30
Dolcini, Grabert, Safi, Trauzettel,
Phys. Rev. Lett. 91, 266402 (2003)
shot noise (  V) for non-chiral LL
Sshot = S( eV)  IBS · 2 e F( / L)
F
F (ω  ωL ) → 1
2
1.0
e* = e
0.5
0.0
F ω = g
 / L
Frequency-averaging gives the fractional charge
Trauzettel, Safi, Dolcini, Grabert, Phys. Rev. Lett. 92, 226405 (2004)
e* = g e
Discussion
LEAD
WIRE
In the regime ω  ωL
Lω  L
one always probes the
physics of the leads
e* = e
LEAD
Finite frequency noise (  V)
S( x;)  S0 ( x;)  Simp ( x;)
does not depend on V !
(the same as in equilibrium)
Excess
noise
depends on V
SEX ( x;)  S( x; )  S( x;) |V 0
SEX ( x;)  Simp ( x;)  Simp ( x;) |V 0
For a non-interacting wire (g=1)
SEX =
0
if | | > eV
2 (eV -| |) T (1-T)
if | | < eV
1.0
0.8

0.6
Diagonal shape
0.4
0.2
0.0
0.0
0.2
0.4
0.6
eV
0.8
1.0
SEX ( x;)  S( x; )  S( x;) |V 0
in an interacting wire
Dolcini, et al. PRB 71, 165309 (2005)
a)
30
12
b)
30
16
9
25
20
20
8
15
4
12
3
0
15
/L
6
Y Axis
g=0.25
25
-3
10
10
-6
5
5
g=0.50
0
-4
-8
-9
0
5
10
15
20
25
c)
0
30
0
30
30
25
25
0
5
10
15
20
25
30
d)
70
20
60
15
20
10
5
15
0
-5
-10
20
/L
g=0.75
50
40
30
15
20
10
10
5
5
0
30
0
10
0
-10
-15
0
5
10
15
20
eV / L
25
0
5
10
15
20
eV / L
25
30
g=0.95
Summary and Conclusions
Interacting 1D quantum wire (Luttinger Liquid), attached to
metallic leads, and with an impurity
 Shot Noise: Fano factor depends on  / L
o
  L
physics of non-interacting wire
o
  L
interaction effects are observable
Fractional charge e* = eg observable
through frequency averaging
 Excess Noise: V- diagram: diagonal
interaction
horizontal striped
Experimental realizability
ħ L = ħ vF/gL ~ meV
Linearity of the spectrum fulfilled
SIS on-chip detector:
2; Al 100 GHz; Nb  1 THz
THz frequencies realistic
DeBlock et al. Science 301, 203 (03)
1.0
0.8
F ()  1  (1  g
2
) L / 2vF 
2
g=0.75
F()
Low-frequency analysis
0.6
0.4
 O( )
g=0.5
3
0.2
g=0.25
0.0
0.0
0.5
1.0
 / 2L
1.5
2.0
Andreev-type reflections at the contacts
WIRE
LEAD
(Interacting: 0 < g <1 )
(Non Interacting: g=1)
t
x
x
1+
-

F(ω /ωL )   fn ei n/
L
 h.c.
n 0
x
n = # of Andreev reflections
n = 0
fn=0 = <F>
bulk