最新のブラスト除染技術 - ISOE Network

Download Report

Transcript 最新のブラスト除染技術 - ISOE Network

ISOE/ATC 2006/10/12
ALARA SYMPOSIUM
Introduction of the
Decontamination Method Which
Uses Blasting
Oct./12/2006
IN YUZAWA JAPAN
Contents
1. Outline Decontamination
2. History of Mitsubishi decontamination
technologies
3. Decontamination using blasting
4. Cavitations jet (CJ) decontamination
5. CJ + blast decontamination
6. Revolving flow polishing method
7. Summary
1. Outline Decontamination
The purpose of
decontamination
function of subject
Loss in quantity of
radioactive waste
Exposed reduction of
a worker
DF
Cost
Configuration of an object
(structure, physical amount)
Schedule
(Time required)
The amount of
secondary wastes
Area space
Determination of the
decontaminating method
1
2. History of Mitsubishi decontamination
technologies
除染種類
除染対象
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
S50 S51 S52 S53 S54 S55 S56 S57 S58 S59 S60 S61 S62 S63 H1
H2
H3
H4
H5
H6
H7
H8
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24
RCPインターナル
AP-AC(ターコデコン)
5プラント(11基) DF=6~20
AP-AC(クリデコン)
10プラント(12基) DF=8~30
AP-改AC
27プラント(61基) DF=4~35
45プラント(50基) DF=5~130
NP-改AC希薄
CORD
10プラント(10基) DF=20~75
ループ隔離弁
AP-改AC
4プラント(4基) DF≒10
RCPケーシング
供用中機器
NP-改AC希薄
1プラント(2基) DF≒120
ふげん原子炉冷却材系(系統除染)
キレート系
2プラント(2ループ) DF≒4
有機酸系
2プラント(2ループ)DF≒10
有機酸系
廃液蒸発装置
キレート系
熱交換器
1プラント DF≒10
CORD
1プラント DF≒10
化学除染
RTDバイパス配管
AP-改AC
2プラント(7系統) DF=2~20
NP-改AC
8プラント(24系統)
DF=7~70
NP-改AC希薄
2プラント DF≧10
2プラント(6系統) DF=30~40
NP-改AC希薄
NP-改AC希薄
4プラント DF=10~30
廃棄物
保管中蒸気発生器
ラック等リニューアル廃棄物
ラック/高圧水
3プラント DF≒2
ラック/高圧水
2プラント
系統除染
廃炉
SODP/CORD他
〔技術検討〕
廃棄物
電解除染 (廃炉解体後除
染を含む)
ラック等リニューアル廃棄物
電解等[実機適用]
蒸気発生器水室
RV出入口管台内面(クラッディング)
ボロンウェットブラスト
23プラント(83水室) DF≒2
SUSカットワイヤブラスト
1プラント(4個所) DF>10
RCPケーシング(MCP含む)
物理除染
供用中機器
SG伝熱管内面
アルミナウェットブラスト
1プラント(4個所) DF>10
主冷却材管切断端
アルミナウェットブラスト
1プラント(4個所) DF>10
原子炉容器上蓋
アルミナドライブラスト
11プラント(58個所) DF>10
SUSカットワイヤブラスト
1プラント DF>10
2
3. Decontamination using blasting
facility which lifts
The control panel of a whole system
Blaster
Accumulator Drier
Compressor
Cooler
Drier
Filter
Air pressure power control panel
Drum
Drum with radiation shield
Outdoors
Blower
Blast tank
Blast equipment
(primary cyclones separator )
2次サイクロンセパレータ
Hose balancer
Bag filter dust sampler
(Vacuumed pressure)
Recovery blower
Supply of air
フ
R/V
゙
platform for shields
Decontamination equipment
ラ
R/V outlet shield
ス plug
ト
材
収
R/V outlet
nozzle neck
Vacume blast gun
Blaster (Blast circulation system)
3
3. Decontamination using blasting
Functional examination situation
Pipe(nozzle neck mockup)
研削した跡
Cylinder
forcing nozzle
AIR
for
Guide roller
Nozzle ( Vacuumed blast gun)
4
3. Decontamination using blasting
main specifications
1. Decontamination equipment
(1) Decontamination system:Dryness type vacuumed blast
(3) Guide system :Trapezoid screw sending type nozzle
rotation
(4)Weight:About600kgf/set
2.Utilities
(1)Used power supply:AC200V
(2) Used air supply:Station service air 0.6MPa
5
3. Decontamination using blasting
Features of various blasting materials
Iron
SUS
alumina
Aℓ2O3
Glass
SO2
DF
large
small
small
middle
large
Remaining
effects
large
middle
small
large
small
Cost
large
small
small
small
small
Damage
large
small
small
middle
large
Boric
Particle
Cut Wire
Particle
Cut Wire
6
3. Decontamination using blasting
 Particle diameter of the blast materials :
Usual φ0.1~2mm
 Blast pressure : Usual l5~6kg/cm2
 Blast Angle : Usual 45°≦
The configuration before and after activity of blast material (stainless steel grid)
Case of projection factory test to steel materials
Before(×200)
After 1-time use( × 200)
7
3. Decontamination using blasting
The check of the soundness of target material
• When the amount of grinding is large
•
•
⇒ Reduction in thickness
Loss of a resisting pressure function
8.1~8.7μm/2times,13.3~15.1μm/3 times
When the amount of grinding is locally large
⇒ SCC,Fatigue occurs
Influence on the plant by remaining
(Remainder of recovery, Remainder of Pierced)
They are 10cc remains at the blast of about 300ℓ
8
4. Cavitations jet (CJ) decontamination
It compares with high-pressure water washing in mind,
and is a high physical impulsive force efficiently
⇒ Compact equipment
With no pollution expansion of dust generating etc.
into air because of underwater washing
With no influence which it has on lining in washing time
of a decontamination level
Fundamentally, with no secondary waste by decontamination
Contraction
Cavitation
bubbles
Liquid
9
4. Cavitations jet (CJ) decontamination
Track record ①
Spent fuel pit surface of wall and fuel rack cell inside
Object
Pit
surface
Purpose
Before
After
Pollution
700~1200
22000 cpm
cpm
removal
fuel rack Dose
rate
cell inside reduction
5.9 mSv/h
0.9 mSv/h
DF
Note
18~30
CJ+
washing
6.6
Underwater
Measureme
-nt data
Track record②
The part which has clad adhesion by contact to the fuel for
a fuel extraction facility
DF 2.1~13.5(総平均8.8)
10
4. Cavitations jet (CJ) decontamination
The application example to fuel extraction equipment
Before
(Those with blackish brown clad)
After
(With no adhesion remains of clad)
11
4. Cavitations jet (CJ) decontamination
Enforcement example:
Outline specification
High-pressure pump:16MPa-18L/min
(Hand-pushed conveyance type)
Nozzle:10MPa-4.4 L/min
Required utility:The power supply for pumps
220V-23A,Water for washing about4m3
Fuel transfer pit
Pure water for work
High-pressure
pump
Cavity
Operation floor
C/V
A/B
About 6m
Lifting frame
Nearly drain Floor
surface washing
Transfer pipe
Track frame
Drain part washing
2m
長靴
Nozzle
12
5. CJ + blast decontamination
[Finishing patent application]
The polish grain mixed in the cj grinding-removes
adhered clad
The decontamination effect higher than what added
the decontamination effect of CJ and a blast simply
◎Influence examination to in service equipment and apparatus
・In a system application test, it affection-evaluates with a mock-up
The faculty of a facility is not affected even if it executes for 30
minutes
◎The faculty of a facility is not affected even if it executes
13
5. CJ + blast decontamination
crane
Nozzle feed
device
High-pressure pump feed line
High-pressure pump
22MPa,15 ℓ /min
P
Filter housing
Surplus water return line
control panel
Water recovery line
Container
Circulation pump
(
)
Mono
flex pump
Blast grain
suction nozzle
Blast grain
Turn table
Frame
strainer
+ stream
CJ
P
PI
To air filter
Air purge line
フィルター
Water drain
line
Manometer
PI
SG insert plate
When collecting
Blast grains return line
To floor drain
14
5. CJ + blast decontamination
Applicability test with actual machine
Object : SG insert plate
Before
After
15
5. CJ + blast decontamination
 The decontamination result in a system
application test
Object
B-SG
HOT
D-SG
COLD
Before
After
40mSv/h
0.7mSv/h
(14.97mSv/h) (0.09mSv/h)
25mSv/h
0.63mSv/h
(9.96mSv/h) (0.09mSv/h)
Decontami
nation time
D.F.
60 min.
166
90 min.
111
Notes : ( ) inside value is the dose rate to extracted
16
6. Revolving flow polishing method
[Finishing patent application]
〈Aim〉
Inside contamination of long piping which has a
crookedness part is decontaminated
A revolution style is given to a flow Blast grain Blast
grain
In the conventional blasting, it checks that the piping
crookedness part round which an Blast grain does not
spread can also be decontaminated efficiently.
17
6. Revolving flow polishing method
The outline of the gas revolution flow grinding method
Distances the revolving flow can reach
Q1: Air to be used for revolving flow
Q2: Air to be used for suppressing revolving flow
Q3: Air to be used with abrasive
Speed of abrasion
Abrasive
Fluidics
Insertion type
Revolving flow type
Insert the sliding nozzle from
tube end and make it move.
Tube to be
decontaminationed
Range of decontamination
is small
Tube to be
decontaminationed
Sliding nozzle
δδ (μ μm/min)
Principle of generating revolving flow
Butt tube ends
Range of decontamination
is small
Distance from nozzle outlet L (m)
Characteristic between speed of abrasion and distance
(Long tube)
Fixed nozzle
18
6. Revolving flow polishing method
0.6
(mm/min)
0.7
0.8
0.7
d
0.8
0.4
0.3
0.2
0.5
0.4
0.3
0.2
0.1
0
30
35
40
Average
speed in piping
配管内平均速度
45
Um
50
(m/s)
55
研削速度と配管内平均速度との関係
Relation 図4
between
grinding speed and the average flow
velocity in piping
If the average speed in piping is made
quick, grinding speed will increase
of abrasion
Speed研削速度
of abrasion d
Speed 研削速度
( mm/min)
Element examination
0.6
0.5
0.1
0
0
0.5
Flux
ratio
流量比
1
1.5
2
(Q2+Q3)/Q1
図6
研削速度と流量比との関係
Relation between
grinding speed and a flux ratio
Since the flux which induces
revolution speed is Q1, if a flux ratio
becomes large, degree centrifugal
force will become weaker and
grinding speed will become small.
19
6. Revolving flow polishing method
System application examination
Heart exchanger
tube
① Supply air former Pressure: 0.5MPa
② amount of grinding airstreams
a.For revolution style generating(Q1):1200NL/min
b.For revolution style control(Q2):400 NL/min
c.For grinding material supply(Q3):180NL/min
③ Blast material: 200μm Alumina grain
④ Decontamination time : 40分
SG
Suction plug
管
板
*A *D *B *C
Seal plug
Seal plug
*F
*G
Oil pressure pump
Steam generator
Channel head
Oil pressure pump
Preliminary
recovery line
*E
*A:For blast material supply
*B:For revolution style generating
*C:For revolution style control
*D:For hopper pressurization
Hopper
Supply line
*E:For vibration
Recovery line
*F:For discharge part seals
Fluidics
Vacuum cleaner
Discharge side
Inhalation side
(Hot side)
(Cold side) Separator
*G:For inhalation part seals
Steam generator heat-exchangers tube inside decontamination equipment System composition figure
20
7. Summary
The needs for decontamination
【Former is also from now on】
 Reduction of the amount of secondary
generation wastes
 Improvement in the speed of
decontamination speed
Cost reduction
 Radiation exposure reduction
The spirit of ALARA has been, and will be
respected in our efforts forever.
21