Transcript Document
THE EMKIN FILES What is the Mystery of THE E M K I N FILES ? • Engineers are using software for which limitations have been documented. • Engineers are designing structures without fully understanding the limitations of the software analysis tools they are using. WHY ? • For more than 29 years, Dr. Leroy Emkin has been telling the story… • Many have not listened… WHY ? For more than 29 years the comparisons have been difficult. Until Now… The Emkin Files now brings you two illustrations of some significant differences. We used the Structural Desktop program to translate files and run them through parallel analysis. 14 STORY BUILDING • Original Bracing Layout • A Look at Load Distribution and Torsion in the 2nd, 3rd & 4th Stories • Double & Single-Story Bracing Results • Base Shear Comparison • Limitations of RISAFloor & RAM Steel Type Programs • Conclusion Double-Story Bracing vs. Single-Story Bracing GT STRUDL Base Shear Comparison RISAFloor, GT STRUDL & STAAD Base Shear (Z-dir) 256 8 307 295 260 7 Frames 316 299 255 267 244 3 RISAFloor STAAD GT STRUDL 93 1 147 172 0 50 100 150 200 Base Shear (kips) 250 300 350 Frames 1 3 7 8 Average % Dif. Between GT STRUDL & STAAD 14.6% 9.6% 5.8% 4.2% 8.5% Frames 1 3 7 8 Average % Dif. Between GT - STAAD Avg. & RISAFloor 42.0% 0.2% 15.4% 15.0% 18.1% GT STRUDL Base Shear Comparison RISAFloor, GT STRUDL & STAAD Base Shear (X - direction) 169 9 164 6 Frames 242 233 237 233 168 5 278 272 222 4 241 222 RISAFloor STAAD GT STRUDL 140 2 128 137 0 50 100 150 Base Shear (kips) 200 250 300 Frames 2 4 5 6 9 Average % Dif. Between GT STRUDL & STAAD 6.8% 8.8% 2.3% 1.6% 3.6% 4.6% Frames 2 4 5 6 9 Average % Dif. Between GT - STAAD Avg. & RISAFloor 5.9% 3.9% 39.0% 30.0% 28.9% 21.5% Load Application • Limitations of RISAFloor and RAM Steel – – – – Inability to account for non-rectangular geometry Assumes that side wall wind loadings are equal and opposite Applies the Wind Load in orthogonal directions only Difficult to account for architectural features, or other exterior obstructions • Load Application with GT STRUDL and STAAD.Pro – Engineer can apply loads correctly regardless of geometry – Can handle any shape of structure – Can account for architectural features and exterior obstructions and distribute the load along the load path of the structure Conclusions • Torsion is a cause of unusual story shears due to the 2nd floor weak story (atrium), architectural features, nonorthogonal window wall projections, and the nonsymmetric locations of brace frames • The 2-Story X-Bracing contributed to the unusual loading patterns in the Bracing. • The ability of RAM Steel / RISAFloor-like programs to model the correct wind loadings is limited to symmetrical / rectangular structures. • GT STRUDL and STAAD.Pro require more time to create a model, but allow the user to correctly apply wind pressures and other loadings. Cable Pavilion Structure – Preliminary Design • Base ~ 40 meters square • Tower Height ~ 25 meters • Comparisons based on selfweight only Structural Desktop Model GT STRUDL Model STAAD.Pro Model CABLE # CABLE # Node 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1961 1962 1963 1969 1972 1974 1975 3444 4404 4405 4406 4409 4817 4820 4929 4930 100 13 14 455 597 195 185 813 812 811 1620 1371 1355 1747 1387 1419 CABLE # CABLE # Node 1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 1959 1960 1964 1965 1966 1967 1968 1970 1971 1973 3441 3445 3454 4407 4408 4410 4816 4818 4821 4931 4932 4933 109 127 127 90 90 456 456 598 598 127 866 866 866 1622 1622 1379 1363 1748 1748 109 1379 1363 STAAD PRO RESULTS UPPER CABLES Cable Force 2 Initial Length Input Length Node 2 Cable Force 1 (kN) CABLE # Node 1 Node 2 (kN) (length) (m) (m) 12 198.878 374.42 24.534 24.4997 9007 100 12 81 325.767 347.49 25.378 25.3425 9010 13 81 119 505.503 595.65 18.886 18.8596 9013 14 119 14 250.02 300.47 17.372 17.3477 9031 455 14 14 356.241 245.36 16.7 16.6767 9040 597 14 12 76.314 144.03 15.448 15.4264 9046 195 12 13 50.635 151.36 15.845 15.8229 9049 185 13 858 567.775 571.37 18.886 18.8596 9055 813 858 13 119.124 79.13 21.536 21.5059 9064 812 13 12 105.843 81.6 21.536 21.5059 9067 811 12 813 296.206 304.12 17.372 17.3477 9070 1620 813 811 370.916 353.2 25.378 25.3425 9079 1371 811 812 368.326 351.93 24.534 24.4997 9088 1355 812 813 284.658 289.87 16.7 16.6767 9094 1747 813 812 39.135 128.49 15.448 15.4264 9100 1387 812 811 56.612 150.38 15.845 15.8229 9103 1419 811 BOTTOM CABLES Cable Force 2 Initial Length Input Length Node 2 Cable Force 1 (kN) CABLE # Node 1 Node 2 (kN) (m) (m) 791 134.725 150.99 12.71 12.7020 9001 109 791 798 43.47 49.43 12.893 12.8849 9004 127 798 791 20.889 175.44 12.893 12.8849 9001 109 791 798 190.11 233.99 11.65 11.6427 9004 127 798 799 8.908 10.65 10.65 10.6433 9022 90 799 798 96.342 80.22 11.39 11.3829 9025 456 798 799 78.098 85.5 11.0364 11.0295 9028 456 799 797 140.901 85.89 11.976 11.9685 9034 598 797 796 144.662 25.76 11.707 11.6997 9037 597 796 795 308.644 220.13 10.391 10.3845 9043 127 795 1343 49.739 52.59 12.893 12.8849 9052 866 1343 1342 39.452 43.05 12.893 12.8849 9058 866 1342 1340 346.034 291.68 10.391 10.3845 9061 866 1340 1341 103.4 86.2 11.036 11.0291 9073 1622 1341 1342 118.028 84.08 11.39 11.3829 9076 1622 1342 791 239.971 238.46 11.649 11.6417 9082 1379 791 794 193.619 195.32 12.731 12.7230 9085 1363 794 1344 114.566 95.61 11.707 11.6997 9091 1748 1344 1343 114.266 83.62 11.98 11.9725 9097 1748 1343 796 24.849 90.05 11.837 11.8296 9106 109 796 1341 3.147 12.98 10.65 10.6433 9109 1379 1341 1344 14.924 21.64 11.825 11.8176 9112 1363 1344 Element ID# 91961 91962 91963 91969 91972 91974 91975 93444 94404 94405 94406 94409 94817 94820 94929 94930 Element ID# 91959 91960 91964 91965 91966 91967 91968 91970 91971 91973 93441 93445 93454 94407 94408 94410 94816 94818 94821 94931 94932 94933 GT STRUDL RESULTS TOP CABLES Cable Force Unstress Length (kN) (m) 859.54 24.1443 649.36 25.6387 1084.88 18.8593 549.58 17.6147 631.64 16.3952 149.96 15.2777 149.2 15.9463 1075.55 18.8924 191.7 21.536 191.7 21.536 579.14 17.5933 716.32 25.5946 898.17 24.1609 664.28 16.4136 150.47 15.2747 150.47 15.9156 BOTTOM CABLES Cable Force Unstress Length (kN) (m) 255.5 12.7129 251.41 12.8784 243.15 12.8641 248.57 11.6664 247.63 10.5471 249.74 11.2928 258.27 11.0025 259.84 11.8918 255.79 11.665 250.74 10.3484 248.64 12.8609 255.11 12.882 246.38 10.3545 261.26 11.001 242.99 11.2929 254.13 11.661 257.45 12.735 258.5 11.6753 256.47 11.9144 258.93 11.7504 244.32 10.5427 258 11.751 Element ID# 81961 81962 81963 81969 81972 81974 81975 83444 84404 84405 84406 84409 84817 84820 84929 84930 Element ID# 81959 81960 81964 81965 81966 81967 81968 81970 81971 81973 83441 83445 83454 84407 84408 84410 84816 84818 84821 84931 84932 84933 Cable Number Upper Cable Comparison 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 STAAD (Length) STAAD (Tension and Length) GT STRUDL 0 200 400 600 Axial Force (KN) STAAD Total Weight: 5161.916 GT STRUDL Total Weight: 5988.347 % Diff. 14.82% kN kN 800 1000 1200 Lower Cable Comparison STAAD (Length) STAAD (Tension and Length) GT STRUDL 38 37 36 35 34 33 32 31 Cable Number 30 29 28 27 26 25 24 23 22 21 20 19 18 17 0.00 50.00 100.00 150.00 200.00 250.00 Axial Force (kN) 300.00 350.00 400.00 • TRUST NO ONE TRUST NO ONE • Our first responsibility is to the public safety. • The Stamping Engineer is 100% responsible. •THE TRUTH IS OUT THERE THE TRUTH IS OUT THERE • Good engineering practice is finding the true answer, not just getting an answer. • Understanding your software is a requirement, not an option. • All software is NOT created equal. • I WANT TO BELIEVE I WANT TO BELIEVE …that the structural engineering profession has the integrity that we must have to fulfill our commitment to the public trust. The Emkin Files is one means to assist our fellow structural engineers to accomplish this goal. Special Thanks to: The Ramblin’ Wrecks from Georgia Tech Dr. Leroy Emkin Dr. Kenneth (Mac) Will Michael Swanger Robert Abernathy Hamid Zand Ben Deaton The GT STRUDL Users Group And, of course, to: Joan “Joan of Tech” Incrocci