Extended Diffraction-Slice Theorem for Wavepath Traveltime

Download Report

Transcript Extended Diffraction-Slice Theorem for Wavepath Traveltime

3D Multisource
Full-Waveform Inversion using
Quasi-Monte Carlo Phase Encoding
Chaiwoot Boonyasiriwat
Jan. 7, 2010
Outline
• Introduction to Multisource Technology
• Phase Encoding
• Multisource Full-Waveform Inversion
• Quasi-Monte Carlo Phase Encoding
• Numerical Results
• 3D SEG/EAGE Overthrust Model
• Summary
• Future Work
• Acknowledgment
1
Introduction: Multisource Tech.
• Migration
• Delayed-shot migration (Zhang et al., 2005)
• Random phase encoding (Romero et al., 2000)
• Plane-wave migration (Liu et al., 2006; Shan
and Biondi, 2008; Shan et al., 2009)
• Full-Waveform Inversion (FWI)
• Plane-wave FWI (Vigh and Starr, 2008)
• Random phase encoding (Krebs et al., 2009;
Zhan et al., 2009)
2
Single-Source Method
3
Multisource Method
Linear Phase Encoding—Planewave Decomposition
4
Multisource Method
Random Phase Encoding
5
CSG vs SSG
CSG
SSG
6
Outline
• Introduction to Multisource Technology
• Phase Encoding
• Multisource Full-Waveform Inversion
• Quasi-Monte Carlo Phase Encoding
• Numerical Results
• 3D SEG/EAGE Overthrust Model
• Summary
• Future Work
• Acknowledgment
7
Conventional FWI
Model
Observed Data
Evaluate misfit function and compute gradient
Perturb Model
Evaluate misfit function
No
Search criterion
No
Yes
Convergence criterion
Yes
Done
8
Multisource FWI
Model
Encoded Data
Evaluate misfit function and compute gradient
Perturb Model
Evaluate misfit function
No
Search criterion
No
Yes
Convergence criterion
Yes
Done
9
2D Multisource FWI
Krebs Method (ExxonMobil): one SSG,
random source polarity, dynamic encoding
8
2D Multisource FWI
Zhan Method (UTAM): multiple SSGs,
random time shift, static encoding, deblurring filter
9
3D Multisource FWI
Krebs Source Configuration
10
3D Multisource FWI
Closely Packed Source Configuration
11
3D Multisource FWI
Loosely Packed Source Configuration
12
3D Multisource FWI
Quasi-Monte Carlo Source Configuration
13
Static vs Dynamic Configuration
Static
Dynamic
Iteration
1
2
14
Outline
• Introduction to Multisource Technology
• Phase Encoding
• Multisource Full-Waveform Inversion
• Quasi-Monte Carlo Phase Encoding
• Numerical Results
• 3D SEG/EAGE Overthrust Model
• Summary
• Future Work
• Acknowledgment
15
3D SEG/EAGE Overthrust Model
16
Numerical Results
True Velocity Model
17
Numerical Results
Initial Velocity Model
18
Numerical Results
Velocity Model from Static QMC
19
Numerical Results
Velocity Model from Dynamic QMC
20
Numerical Results
Velocity Model from Krebs Method
21
Outline
• Introduction to Multisource Technology
• Multisource Full-Waveform Inversion
• Numerical Results
• 3D SEG/EAGE Overthrust Model
• Summary
• Future Work
• Acknowledgment
22
Summary
• 3D multisource FWI using multiple SSGs is compared
with multisource FWI using one SSG.
• Using multiple SSGs and a dynamic QMC phase
encoding provides a better-quality velocity model than
a static QMC phase encoding and Krebs method.
• Theoretical speedups need to be verified.
• More reliable timing results will be presented later.
23
Outline
• Introduction to Multisource Technology
• Multisource Full-Waveform Inversion
• Numerical Results
• 3D SEG/EAGE Overthrust Model
• Summary
• Future Work
• Acknowledgment
24
Future Work
• Compare various multisource configurations.
• Compare random phase encoding with planewave encoding.
• Apply random time shifts and deblurring filter.
• Apply 3D multisource FWI to field data.
25
Acknowledgment
•
•
•
•
•
•
Sponsors of 2009 UTAM consortium
HPC: Aron Ahmadia and Mark Cheeseman
Shaheen: Iain Georgeson and Jonathan Anderson
Multisource: Ge Zhan and Wei Dai
Workstation: Benoit Marchand
KAUST: Jerry Schuster
26