Extended Diffraction-Slice Theorem for Wavepath Traveltime
Download
Report
Transcript Extended Diffraction-Slice Theorem for Wavepath Traveltime
Applications of Time-Domain
Multiscale Waveform Tomography
to Marine and Land Data
C. Boonyasiriwat1, J. Sheng3, P. Valasek2, P.
Routh2, B. Macy2, W. Cao1, and G.T. Schuster1
1
Department of Geology and Geophysics, University of Utah
2 Seismic Technology Development, ConocoPhillips
3 Formerly University of Utah, Currently at Nexus Geoscience
Outline
•
•
•
•
Introduction
Time-domain multiscale waveform tomography
Processing workflow
Field data results:
• Gulf of Mexico
• Saudi Arabia
• Summary
1
Waveform Tomography
• Wave-equation based model building technique.
True Vp Velocity of Marmousi II Model
0
Depth (km)
4500
4
1000
Reconstructed Vp Velocity Model
0
Depth (km)
4500
4
0
Horizontal Position (km)
Boonyasiriwat et al., 2008
16
1000
2
Problem and Solution
Problem:
Find a velocity model from seismic data that
2
minimizes the data residual Pobs Pcalc
Proposed Solution:
- Use a gradient-based method
- Use a multiscale method in X-T domain
3
Waveform Tomography
True
Velocity
Observed Wavefield
Initial
Velocity
P
Calculated Wavefield P calc
obs
Wavefield Residual
P
obs
P
calc
Velocity Update
Iterate until wavefield
residual is small
4
Outline
•
•
•
•
Introduction
Time-domain multiscale waveform tomography
Processing workflow
Field data results:
• Gulf of Mexico
• Saudi Arabia
• Summary
5
Why Use Multiscale?
Coarse Scale
Misfit function ( f )
Low Frequency
High Frequency
Fine Scale
Model parameter (m)
Image from Bunks et al. (1995)
6
Multiscale Waveform Tomography
1. Collect data d(x,t)
syn.
2. Generate synthetic data d(x,t) by FD method
3. Adjust v(x,z) until ||d(x,t)-d(x,t)syn.|| 2 minimized by CG.
4. To prevent getting stuck in local minima:
a). Invert early arrivals initially
mute
b). Use multiscale: low freq.
high freq.
7
Outline
•
•
•
•
Introduction
Time-domain multiscale waveform tomography
Processing workflow
Field data results:
• Gulf of Mexico
• Saudi Arabia
• Summary
8
Processing Workflow
Pre-Processing of Data
Estimating Source Wavelet
Generating Initial Model
Multiscale Waveform Tomography
Validating Velocity Tomograms
9
Processing Workflow
Pre-Processing of Data
Estimating Source Wavelet
3D-to-2D conversion
Attenuation compensation
Random noise removal
Generating Initial Model
Multiscale Waveform Tomography
Validating Velocity Tomograms
9
Processing Workflow
Pre-Processing of Data
Estimating Source Wavelet
Generating Initial Model
Generate a stacked section
Pick the water-bottom
Stack along the water-bottom
Multiscale Waveform Tomography
Validating Velocity Tomograms
9
Processing Workflow
Pre-Processing of Data
Traveltime picking
Estimating Source Wavelet
Generating Initial Model
Initial model: RMS velocity
Refraction traveltime inversion
Multiscale Waveform Tomography
Validating Velocity Tomograms
9
Processing Workflow
Pre-Processing of Data
Estimating Source Wavelet
Generating Initial Model
Low-pass filtering
Multiscale Waveform Tomography
Inversion from low- to
high-frequency bands
Validating Velocity Tomograms
9
Processing Workflow
Pre-Processing of Data
Estimating Source Wavelet
Generating Initial Model
Multiscale Waveform Tomography
Migration images
Validating Velocity Tomograms
Common image gathers
9
Outline
•
•
•
•
Introduction
Time-domain multiscale waveform tomography
Processing workflow
Field data results:
• Gulf of Mexico
• Saudi Arabia
• Summary
10
Gulf of Mexico Data
480 Hydrophones
515 Shots
a) Virtu
b) Original CSG 1
0
0
0.5
0.5
12.5 m
dt = 2 ms
Tmax = 10 s
1
Time (s)
1
1.5
1.5
2
2
2.5
2.5
3
1
2
1.5
Offset (km)
2.5
3
1
1.5
Offs
11
Low-pass Filtering
(b) 5-Hz CSG
(c) 10-Hz CSG
0
0
0.5
0.5
0.5
1
1
1
1.5
1.5
1.5
2
2.5
Time (s)
0
Time (s)
Time (s)
(a) Original CSG
2
2.5
2
2.5
3
3
3
3.5
3.5
3.5
4
0
2
4
Offset (km)
4
0
2
4
Offset (km)
4
0
2
4
Offset (km)
12
Reconstructed Velocity
Velocity (m/s)
Velocity (m/s)
13
Kirchhoff Migration Images
14
Kirchhoff Migration Images
14
Comparing CIGs
15
Comparing CIGs
CIG from Traveltime Tomogram
CIG from Waveform Tomogram
16
Comparing CIGs
17
Comparing CIGs
CIG from Traveltime Tomogram
CIG from Waveform Tomogram
18
Comparing CIGs
19
Comparing CIGs
CIG from Traveltime Tomogram
CIG from Waveform Tomogram
20
Outline
•
•
•
•
Introduction
Time-domain multiscale waveform tomography
Processing workflow
Field data results:
• Gulf of Mexico
• Saudi Arabia
• Summary
21
Saudi Arabia Land Survey
1.6 km
Y-Coord. (km)
100 m
0 km
0 0
X-Coord. (km)
50
1. 1279 CSGs, 240 traces/gather
2. 30 m station interval,
max. offset = 3.6km
3. Line Length = 46 km
4. Pick 246,000 traveltimes
5. Traveltime tomography -> V(x,y,z)
2
-3.6
Offset (km)
3.6
22
Brute Stack Section
0
2.0
3920
CDP
5070
23
Traveltime Tomostatics + Stacking
0
2.0
3920
CDP
5070
24
Waveform Tomostatics + Stacking
0
2.0
3920
CDP
5070
25
Outline
•
•
•
•
Introduction
Time-domain multiscale waveform tomography
Processing workflow
Field data results:
• Gulf of Mexico
• Saudi Arabia
• Summary
26
Summary
Acoustic waveform inversion was successfully applied to
both marine and land datasets, and can provide accurate
velocity subsurface structures.
Issues:
• Cost > 100 iterations: How to reduce cost?
• Acoustic vs. Elastic: How far can we go with acoustic?
• Anisotropy needed?
• Source wavelet important: Source-independent inversion.
• Missing low frequencies: Better initial model via
reflection tomography.
27
Acknowledgment
We would like to thank
• UTAM sponsors for financial support.
• Amarada Hess and Saudi Aramco for providing
us the datasets.
28