Quality Management - Majmaah University

Download Report

Transcript Quality Management - Majmaah University

Quality Management
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 1
Objectives




To introduce the quality management process and
key quality management activities
To explain the role of standards in quality
management
To explain the concept of a software metric,
predictor metrics and control metrics
To explain how measurement may be used in
assessing software quality and the limitations of
software measurement
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 2
Topics covered




Process and product quality
Quality assurance and standards
Quality planning
Quality control
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 3
Software quality management



Concerned with ensuring that the required
level of quality is achieved in a software
product.
Involves defining appropriate quality
standards and procedures and ensuring that
these are followed.
Should aim to develop a ‘quality culture’
where quality is seen as everyone’s
responsibility.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 4
What is quality?


Quality, simplistically, means that a product should
meet its specification.
This is problematical for software systems
•
•
•
There is a tension between customer quality requirements
(efficiency, reliability, etc.) and developer quality
requirements (maintainability, reusability, etc.);
Some quality requirements are difficult to specify in an
unambiguous way;
Software specifications are usually incomplete and often
inconsistent.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 5
The quality compromise


We cannot wait for specifications to improve
before paying attention to quality
management.
We must put quality management
procedures into place to improve quality in
spite of imperfect specification.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 6
Scope of quality management


Quality management is particularly important
for large, complex systems. The quality
documentation is a record of progress and
supports continuity of development as the
development team changes.
For smaller systems, quality management
needs less documentation and should focus
on establishing a quality culture.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 7
Quality management activities

Quality assurance
•

Quality planning
•

Select applicable procedures and standards for a
particular project and modify these as required.
Quality control
•

Establish organisational procedures and standards for
quality.
Ensure that procedures and standards are followed by the
software development team.
Quality management should be separate from
project management to ensure independence.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 8
Quality management and software development
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 9
Process and product quality



The quality of a developed product is
influenced by the quality of the production
process.
This is important in software development as
some product quality attributes are hard to
assess.
However, there is a very complex and poorly
understood relationship between software
processes and product quality.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 10
Process-based quality


There is a straightforward link between process and
product in manufactured goods.
More complex for software because:
•
•

The application of individual skills and experience is
particularly imporant in software development;
External factors such as the novelty of an application or
the need for an accelerated development schedule may
impair product quality.
Care must be taken not to impose inappropriate
process standards - these could reduce rather than
improve the product quality.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 11
Process-based quality
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 12
Practical process quality




Define process standards such as how
reviews should be conducted, configuration
management, etc.
Monitor the development process to ensure
that standards are being followed.
Report on the process to project
management and software procurer.
Don’t use inappropriate practices simply
because standards have been established.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 13
Quality assurance and standards




Standards are the key to effective quality
management.
They may be international, national,
organizational or project standards.
Product standards define characteristics that
all components should exhibit e.g. a common
programming style.
Process standards define how the software
process should be enacted.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 14
Importance of standards



Encapsulation of best practice- avoids
repetition of past mistakes.
They are a framework for quality assurance
processes - they involve checking
compliance to standards.
They provide continuity - new staff can
understand the organisation by
understanding the standards that are used.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 15
Product and process standards
Pr od uc t sta nda rds
Pr o ce ss standa rd s
D esig n rev ie w f orm
D esig n rev ie w co nd uc t
R e qu irem en ts do cum en t s truc tu re
S ubm issio n of d oc um en ts to C M
M e th od he a de r f orm at
V er sion r ele as e p ro ce ss
Jav a p ro gramm in g style
P ro je ct p la n ap pro va l pro ce ss
P ro je ct p la n f orm at
C h an ge c on trol pro ce ss
C h an ge req ue st f orm
Te st r e co rd in g p ro ce ss
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 16
Problems with standards



They may not be seen as relevant and up-todate by software engineers.
They often involve too much bureaucratic
form filling.
If they are unsupported by software tools,
tedious manual work is often involved to
maintain the documentation associated with
the standards.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 17
Standards development



Involve practitioners in development. Engineers
should understand the rationale underlying a
standard.
Review standards and their usage regularly.
Standards can quickly become outdated and this
reduces their credibility amongst practitioners.
Detailed standards should have associated tool
support. Excessive clerical work is the most
significant complaint against standards.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 18
ISO 9000




An international set of standards for quality
management.
Applicable to a range of organisations from
manufacturing to service industries.
ISO 9001 applicable to organisations which
design, develop and maintain products.
ISO 9001 is a generic model of the quality
process that must be instantiated for each
organisation using the standard.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 19
ISO 9001
M ana gem e nt res pons ib ility
Qu ality sys te m
C o ntro l of no n-co nform in g prod uc ts
D esig n c on trol
H an d ling ,
d eli v ery
P urch asin g
stor age ,
pa ck a gi n g
an d
P urch aser-su pp lied pr od uc ts
P ro du ct i d en tific a tio n an d trac eab ility
P ro ce ss co n trol
Insp ect ion an d testing
Insp ect ion an d test eq u ipm en t
Insp ect ion an d test s ta tus
C o ntra ct rev ie w
C or re c tiv e a c tio n
D oc um en t co ntro l
Q ua lit y r ec o rds
Inter n al qu al ity au dits
T rai n in g
S ervici n g
S ta tistica l te ch n iq ue s
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 20
ISO 9000 certification



Quality standards and procedures should be
documented in an organisational quality
manual.
An external body may certify that an
organisation’s quality manual conforms to
ISO 9000 standards.
Some customers require suppliers to be ISO
9000 certified although the need for flexibility
here is increasingly recognised.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 21
ISO 9000 and quality management
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 22
Documentation standards


Particularly important - documents are the tangible
manifestation of the software.
Documentation process standards
•

Document standards
•

Concerned with how documents should be developed,
validated and maintained.
Concerned with document contents, structure, and
appearance.
Document interchange standards
•
Concerned with the compatibility of electronic documents.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 23
Documentation process
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 24
Document standards

Document identification standards
•

Document structure standards
•

Standard structure for project documents.
Document presentation standards
•

How documents are uniquely identified.
Define fonts and styles, use of logos, etc.
Document update standards
•
Define how changes from previous versions are
reflected in a document.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 25
Document interchange standards



Interchange standards allow electronic documents to
be exchanged, mailed, etc.
Documents are produced using different systems
and on different computers. Even when standard
tools are used, standards are needed to define
conventions for their use e.g. use of style sheets and
macros.
Need for archiving. The lifetime of word processing
systems may be much less than the lifetime of the
software being documented. An archiving standard
may be defined to ensure that the document can be
accessed in future.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 26
Quality planning



A quality plan sets out the desired product
qualities and how these are assessed and
defines the most significant quality attributes.
The quality plan should define the quality
assessment process.
It should set out which organisational
standards should be applied and, where
necessary, define new standards to be used.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 27
Quality plans

Quality plan structure
•
•
•
•
•

Product introduction;
Product plans;
Process descriptions;
Quality goals;
Risks and risk management.
Quality plans should be short, succinct
documents
•
If they are too long, no-one will read them.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 28
Software quality attributes
S afet y
U nd er stan da b il ity
P orta bi lity
S ec u rity
Te stab ili ty
Us ab ili ty
R e li a bi lity
A da p ta b ilit y
R e usab il ity
R es il ien c e
M o du la rity
E ffici e nc y
R o bus tn ess
C om plex ity
Lea rn ab ili ty
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 29
Quality control


This involves checking the software
development process to ensure that
procedures and standards are being
followed.
There are two approaches to quality control
•
•
Quality reviews;
Automated software assessment and software
measurement.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 30
Quality reviews



This is the principal method of validating the quality
of a process or of a product.
A group examines part or all of a process or system
and its documentation to find potential problems.
There are different types of review with different
objectives
•
•
•
Inspections for defect removal (product);
Reviews for progress assessment (product and process);
Quality reviews (product and standards).
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 31
Types of review
R ev iew t yp e
Pr inc ip al pu rp ose
D esig n or progr am
ins pe ction s
T o de tec t de ta ile d errors in th e req uire m en ts, de sign o r co d e. A ch ec k lis t o f
p ossib le er ro rs sh ou ld d rive th e r ev iew .
P ro gress rev ie ws
T o prov id e inform at ion for m an ag em en t ab ou t the ov er a ll prog ress of the
p ro jec t. T h is is b oth a proc ess an d a prod uc t rev ie w an d is co nc e rn ed w ith
cos ts, pla ns an d s ch e du le s.
Q ua lit y r ev ie ws
T o ca rry o ut a t ec h nical ana lysis of p ro du ct co mp on en ts o r do cu m en ta tio n to
fin d mis m a tc h es b et w ee n th e sp ec ificat ion an d the co mp on en t d esig n, co d e or
d oc um en tat ion an d to e nsu re th at d efin ed qu al ity s ta n da rds ha ve bee n f ollo we d .
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 32
Quality reviews



A group of people carefully examine part or all
of a software system and its associated
documentation.
Code, designs, specifications, test plans,
standards, etc. can all be reviewed.
Software or documents may be 'signed off' at a
review which signifies that progress to the next
development stage has been approved by
management.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 33
Review functions



Quality function - they are part of the general
quality management process.
Project management function - they provide
information for project managers.
Training and communication function product knowledge is passed between
development team members.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 34
Quality reviews




The objective is the discovery of system
defects and inconsistencies.
Any documents produced in the process may
be reviewed.
Review teams should be relatively small and
reviews should be fairly short.
Records should always be maintained of
quality reviews.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 35
Review results

Comments made during the review should be
classified
•
•
•

No action. No change to the software or documentation is
required;
Refer for repair. Designer or programmer should correct
an identified fault;
Reconsider overall design. The problem identified in the
review impacts other parts of the design. Some overall
judgement must be made about the most cost-effective
way of solving the problem;
Requirements and specification errors may
have to be referred to the client.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 36
Software measurement and metrics




Software measurement is concerned with deriving a
numeric value for an attribute of a software product
or process.
This allows for objective comparisons between
techniques and processes.
Although some companies have introduced
measurement programmes, most organisations still
don’t make systematic use of software
measurement.
There are few established standards in this area.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 37
Software metric

Any type of measurement which relates to a
software system, process or related documentation
•



Lines of code in a program, the Fog index, number of
person-days required to develop a component.
Allow the software and the software process to
be quantified.
May be used to predict product attributes or to
control the software process.
Product metrics can be used for general predictions
or to identify anomalous components.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 38
Predictor and control metrics
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 39
Metrics assumptions




A software property can be measured.
The relationship exists between what we can
measure and what we want to know. We can only
measure internal attributes but are often more
interested in external software attributes.
This relationship has been formalised and
validated.
It may be difficult to relate what can be measured to
desirable external quality attributes.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 40
Internal and external attributes
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 41
The measurement process



A software measurement process may be
part of a quality control process.
Data collected during this process should be
maintained as an organisational resource.
Once a measurement database has been
established, comparisons across projects
become possible.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 42
Product measurement process
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 43
Data collection



A metrics programme should be based on a
set of product and process data.
Data should be collected immediately (not in
retrospect) and, if possible, automatically.
Three types of automatic data collection
•
•
•
Static product analysis;
Dynamic product analysis;
Process data collation.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 44
Data accuracy

Don’t collect unnecessary data
•

Tell people why the data is being collected.
•

The questions to be answered should be
decided in advance and the required data
identified.
It should not be part of personnel evaluation.
Don’t rely on memory
•
Collect data when it is generated not after a
project has finished.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 45
Product metrics


A quality metric should be a predictor of
product quality.
Classes of product metric
•
•
•
Dynamic metrics which are collected by measurements
made of a program in execution;
Static metrics which are collected by measurements
made of the system representations;
Dynamic metrics help assess efficiency and reliability;
static metrics help assess complexity, understandability
and maintainability.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 46
Dynamic and static metrics

Dynamic metrics are closely related to software
quality attributes
•

It is relatively easy to measure the response time of a
system (performance attribute) or the number of failures
(reliability attribute).
Static metrics have an indirect relationship with
quality attributes
•
You need to try and derive a relationship between these
metrics and properties such as complexity,
understandability and maintainability.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 47
Software product metrics
S oft w a re m et r ic
D escr iption
F an i n /F an -o ut
F an -in is a m eas ure o f th e num be r of fu nc tio ns or m etho ds tha t ca ll som e o th er fu nc tio n
o r m etho d (say X ). F an -o ut is the num be r o f fu nc tio ns tha t are c al led by fu nc tio n X . A
h ig h v al u e for fan -in m ea ns tha t X i s tig htly co up le d to th e rest of the de sign an d
ch an g es to X w ill h av e ex te ns iv e k no ck -on eff ect s. A high va lu e for fan -o ut sug ge sts
th at th e o ve rall com plex ity of X m ay be high b eca us e o f the co mp le x ity of th e co ntro l
lo gic n ee d ed to co or di n ate t h e c al led c omp on en ts .
Le n gth of co d e
T h is is a m ea sur e o f the siz e of a p rog ram . G en e ra lly , the large r the size of th e c od e o f a
com po ne n t, th e m ore co mp le x an d e rror- pron e tha t com po ne n t is like ly to be . Le n gth of
co de ha s bee n sh ow n to be on e o f the m ost re li a ble m et rics for pred ic tin g e rrorp ro ne n ess in c om po ne nts.
C y cl om at ic c om plex ity
T h is is a m ea sur e o f the co n tro l com plex ity of a p rogr am . T h is co ntro l co mp le x ity m ay
b e rela ted to pro gram u nd er stan d ab il ity . I d iscuss ho w to co mp ute cy cl om at ic
com pl e xity in C h ap ter 2 2 .
Le n gth of id en tifie rs
T h is is a m ea sur e o f the av e ra ge len gt h o f di stin ct id e ntifie rs in a p rog ram . T h e lo ng er
th e ide n tifiers , th e mo re like ly th e y a re to be m ea n in gf ul an d h en c e th e mo re
u nd er stan d ab le the progr am .
D ep th of co nd it ion al
n estin g
T h is is a m ea sur e o f the de p th o f ne stin g o f if-state me nt s in a p ro gram . De e pl y n este d if
sta te m en ts a re ha rd to un de rstan d an d a re po te n tial ly e rror- pron e.
F og in de x
T h is is a m ea sur e o f the av e ra ge l en gt h o f w o rds an d se ntenc es in do cum en ts . T h e h ig he r
th e v al u e fo r the F og in de x , the m ore d ifficu lt th e do cu m e nt is t o un de rs ta n d.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 48
Object-oriented metrics
Ob je ct -or ient ed
m etri c
De scr ip tion
Dep th of i nhe rita nce
tr ee
T hi s rep resen ts th e nu m be r o f di screte le ve ls i n the i nher it an c e tr ee whe re subclasse s inhe rit a ttri bu tes and oper at ion s (m ethods ) from supe r-cla ss e s. T he
deep e r the inhe rit ance t re e, the m ore co m plex the de sign . M any di ff eren t ob jec t
classe s m ay have t o be unde rstood to unde rstand t he ob je ct c lasse s at t he l eave s
of the t re e .
M et hod fan -in /f an ou t
T hi s is d ir ec tl y related t o fan -in and f an-ou t as de scr ibe d above and m eans
essen ti all y th e sam e thing . How e ver , it m ay be app ropr ia te t o m a ke a
disti nc ti on be tween ca ll s from oth e r m ethods w it hin t he obj e ct and ca lls fro m
ex terna l m e thod s.
We igh ted m ethods
pe r c la ss
T hi s is the nu m be r o f m ethod s tha t ar e inc luded i n a class we igh ted by t he
co m plex it y o f each m ethod. The refore, a sim ple m ethod m ay hav e a co m plex it y
of 1 and a large a nd co m plex m ethod a m uch high e r va lue . T he large r the va lue
for t his m et ric, the m or e co m plex t he ob jec t c lass. C omp le x ob jec ts a re m ore
li ke ly to be m ore diffi cu lt to under st and . T hey m ay no t be l og ica ll y c ohes ive so
canno t be reu sed e ffec ti ve ly as sup e r-classe s in an inhe rit ance t re e.
Nu m be r o f
ove rriding
ope rati ons
T hi s is the nu m be r o f ope rati ons i n a super -class tha t a re ove r-ri dden in a sub class. A h igh va lue f or t his m e tri c i nd ica tes t ha t the sup e r-class used m ay no t be
an app ropr iate pa ren t for the sub -class.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 49
Measurement analysis

It is not always obvious what data means
•


Analysing collected data is very difficult.
Professional statisticians should be
consulted if available.
Data analysis must take local circumstances
into account.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 50
Measurement surprises

Reducing the number of faults in a program
leads to an increased number of help desk
calls
•
•
The program is now thought of as more reliable
and so has a wider more diverse market. The
percentage of users who call the help desk may
have decreased but the total may increase;
A more reliable system is used in a different
way from a system where users work around
the faults. This leads to more help desk calls.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 51
Key points




Software quality management is concerned
with ensuring that software meets its
required standards.
Quality assurance procedures should be
documented in an organisational quality
manual.
Software standards are an encapsulation of
best practice.
Reviews are the most widely used approach
for assessing software quality.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 52
Key points



Software measurement gathers information
about both the software process and the
software product.
Product quality metrics should be used to
identify potentially problematical
components.
There are no standardised and universally
applicable software metrics.
©Ian Sommerville 2004
Software Engineering, 7th edition. Chapter 27
Slide 53