Transcript Document
Stresses in Thin-walled Pressure Vessels (I) 1 (2t dy ) p (2 r dy ) 1 pr (Hoop Stress) t 2 ( 2 rt ) p ( r ) 2 2 pr 2t (Longitudinal Stress) Stresses in Thin-walled Pressure Vessels (II) 2 ( 2 rt ) p ( r ) 2 1 2 pr 2t Stress State under General Combined Loading Plane Stress Transformation x' x x y x 2 x 'y ' y' y x' y ' x 2 y 2 y x y 2 x cos 2 xy sin 2 sin 2 xy cos 2 y 2 cos 2 xy sin 2 Mohr’s Circle for Plane Stress x' x 'y ' x y 2 x y 2 x y 2 cos 2 xy sin 2 sin 2 xy cos 2 x ' ave ave R x 2 x 'y ' R 2 y 2 x y 2 2 xy 2 2 Principal Stresses tan 2 p 1,2 x y 2 2 xy x y x y 2 2 xy ave R 2 Maximum Shear Stress tan 2 s max x y 2 xy x y 2 2 xy R 2 Mohr’s Circle for 3-D Stress Analysis max 1 2 max min Mohr’s Circle for Plane Strain ave R x x y tan 2 p 2 y 2 2 xy 2 2 max 2 R xy x y x y 2 xy 2 Strain Analysis with Rosette 2 cos 1 1 2 cos 2 2 cos 2 3 3 sin 1 2 sin 2 2 sin 3 2 cos 1 sin 1 x cos 2 sin 2 y cos 3 sin 3 xy Typical Rosette Analysis εa = εx ε = ε /2 + ε /2 + γ /2 y xy b x ε =ε c y εa = εx εb = εx/4 + 3εy/4 + 3 γxy/4 εc = εx/4 + 3εy/4 - 3 γxy/4 εmax εmin max εmax εmin max Stress Analysis on a Cross-section of Beams Stress Field in Beams Stress trajectories indicating the direction of principal stress of the same magnitude. Re-visit of Pressure Vessel Stress Analysis Relations among Elastic Constants Constitutive Relations under Tri-axial Loading Dilatation and Bulk Modulus For the special case of “hydrostatic” loading ----σx = σy = σz = –p x y z DV p p 2 E E (1 ) 1 3 p 3 3 (1 2 ) V E where DV/V is called Dilatation or Volumetric Strain. Define Bulk Modulus K as K p DV / V E 3 1 2 Failure Criterion for Ductile Materials (Yielding Criterion) σ1 σ1 |σ1| = σY σ2 σ2 |σ2| = σY Comparison of Yielding Criteria Tresca Criterion (Max. Shear Stress) Von Mises Criterion (Max. Distortion Energy) 1 1 2 2 Y 2 2 2 |σ1| = σY |σ2| = σY |σ1 – σ2| = σY