Transcript Document
“del operator” Gradient: Divergence: Laplacian: Diffusion Equation: ˆ ˆ ˆ i j k x y z w ˆ w w ˆ ˆ w i j k x y z v1 v2 v3 v x y z 2 2 2 f f f 2 f 2 2 x y z 2 h Ss K 2h t “del operator” Gradient: Divergence: Laplacian: Diffusion Equation: ˆ ˆ ˆ i j k x y z w ˆ w w ˆ ˆ w i j k x y z v1 v2 v3 v x y z 2 2 2 f f f 2 f 2 2 x y z 2 h Ss K 2h t “Diffusion Equation” Cartesian Coordinates Cylindrical Coordinates Cylindrical Coordinates, Radial Symmetry ∂h/∂f= 0 Cylindrical Coordinates, Purely Radial Flow ∂h/∂f= 0 ∂h/∂z = 0 h Ss K 2h t 2h + 2h + 2h = S s h K t x2 y2 z2 2 2 1 rh + 1 h + h = S s h r r r r2 2 z2 K t 2h Kr Kr + r r 2 2h + 1 r2 r h r h r 2 h h S + Kz 2 = s z t Ss h =K r t = S h T t Flow beneath Dam Vertical x-section Flow toward Pumping Well, next to river = line source = constant head boundary Plan view River Channel Domenico & Schwartz (1990) Well Drawdown Case 1: Confined aquifier, Constant pumping rate Q, Steady radial flow qv Kh Q / A K h for radial flow r Q h K 2 r m r where m=aquifer thickness h Q r dr dh 2 mK r r h 0 0 Q r0 ln h0 h 2 T r = Drawdown “Equilibrium” eq., or “Theim” equation e.g., Fetter eq 7-38 D&S eq. 5.21 2x 1005 Confined Aquifer Steady Pumping Rate Q Q/2 T = 5 1000 Head, h 995 990 985 -1000 -500 0 Radius, r 500 1000 Potentiometric Surface Q Confined Aquifer m Well Drawdown Case 2: Unconfined aquifier, Constant pumping rate Q, Steady radial flow qv Kh h Q / A K for radial flow r Q h K 2 r h r where m=aquifer thickness h Q r dr h dh 2 K r r h 0 0 Q r0 ln h02 h 2 K r ≠ (Drawdown)2 Unconfined “Theim” equation e.g., Fetter eq 7-39 D&S eq. 5.24 Swindle: 1) Singulatity at r = 0 2) Steady state flux impossible without source this problem requires annular source term 3) Purely radial flow impossible for unconfined case Radial flow h 1 h 1 h 2 r r r D t 2 Transient flow, Confined Aquifer, No recharge Constant pumping rate Q Initial Condition & Boundary conditions: h(r, 0) h0 h(, t ) h0 h Q limr r0 r 2 T for t > 0 Radial flow h 1 h 1 h 2 r r r D t 2 Initial Condition & Boundary conditions: h(r, 0) h0 h Q limr r0 r 2 T h(, t ) h0 Solution: “Theis equation” or “Non-equilibrium Eq.” where Q Drawdown h0 h W (u) 4 T e u W (u) Ei(u) and where for t > 0 W 0 d W 0 r 2S r2 where u = 4tT 4Dt Approximation for t >> 0 2.25 D t Q Drawdown h0 h ln 2 4 T r D&S p. 151 u2 u3 u4 u5 W (u ) Ei(u ) 0.577216 ln u u .... 4 3 3! 4 4! 5 5! W(u) 0.577216 lnu for small u 0.1 ; i.e., long times or small r Pumping of Confined Aquifer Not GW “level” Potetiometric sfc! USGS Circ 1186 Pumping of Unconfined Aquifer USGS Circ 1186 End L21: Now, Spring break! FLOW NETS Impermeble Boundary Constant Head Boundary Water Table Boundary after Freeze & Cherry Santa Cruz River near Tucson AZ 1942 USGS Circ 1186 Santa Cruz River near Tucson AZ 1989 >100’ GW drop USGS Circ 1186 Santa Cruz River Martinez Hill, South of Tucson AZ 1942 Cottonwoods, Mesquite 1989 >100’ GW drop USGS Circ 1186 q v Kh = q m + A t q m 0 u 0 h K 2 = h t Ss Darcy's Law Continuity Equation Steady flow, no sources or sinks Steady, incompressible flow K T Diffusion Eq.,where = D Ss S S y h h h = h + h K t x x y y Boussinesq Eq. for unconfined flow Initial Condition Pumping @ rate Q1 (note divide) Pumping @ rate Q2 >Q1 USGS Circ 1186