Transcript Slide 1
Hydroformylation Aldehydes R + CO + H2 side reactions R H linear (normal) R alkene isomerization O H O Rh or Co + * R branched (iso) R alkene hydrogenation * Largest homogeneous catalytic process * > 15 billion pounds of aldehydes (alcohols) per year • Commercial catalysts are complexes of Co or Rh • Selectivity to linear (normal) aldehyde important Otto Roelen (1897-1993) HCo(CO)4 Catalyst System – Unmodified Co H O C O Co C O C H O O C Co C O C O C C H Co C O H R Co O - CO + alkene R CO C Monometallic O C O C C O O C Co C C O Bimetallic C proposed bimetallic pathway - NOT important in normal catalysis O O R + CO O C O 3 atm CO = 1.6:1 L:B ratio 90 atm CO = 4.4:1 L:B ratio anti-Markovnikov hydride addition to C=C bond to give linear alkyl + CO R O O O Rate Determining Step + H2 - CO C O C CO C Co H Co C O H O C C O O O O C R Co C C C O O O increasing the CO pressure keeps the back reactions from occuring this limits alkene isomerization and the corresponding opportunity for making branched alkyl d (aldehyde) k[alkene][Co][H 2][CO] -1 dt H Co CO alkene isomerization CO R C O R H OC Co CO Co CO C O Co CO CO CO R R linear alkyl (leads to linear aldehyde) +CO O OC OC CO R Co C O CO CO branched acyl (leads to branched aldehyde) 4% 0% 72% 0.5% 0.6% 15% 1% 2% 6% 0.2% 18% 12% 5% 25% % formyl group addition to indicated carbon 38% HCo(CO)4(PR3) Catalyst System – Phosphine Modified Lynn Slaugh and Richard Mullineaux; Shell Chemical Co. Table 1. Hydroformylation of 1-hexene using Co2(CO)8/2P as catalyst precursor. 160°C, 70 atm, 1.2:1 H2/CO PR3 pKa Tolman n (cm-1) P(i-Pr)3 9.4 2059.2 160 2.8 85.0 -- PEt3 8.7 2061.7 132 2.7 89.6 0.9 PPr3 8.6 2060.9 132 3.1 89.5 1.0 PBu3 8.4 2060.3 136 3.3 89.6 1.1 PEt2Ph 6.3 2063.7 136 5.5 84.6 2.2 PEtPh2 4.9 2066.7 140 8.8 71.7 4.3 PPh3 2.7 2068.9 145 14.1 62.4 11.7 Cone Angle ° kr x 103 (min-1) % Aldehyde to Linear Prod alcohol HRh(CO)(PR3)2 Catalyst System H OC Rh C O PPh3 PPh3 - CO + CO OC Rh Ph3P + alkene PPh3 R H Rh H PPh3 PPh3 C O O R H H H Rh Ph3P C O OC PPh3 O R Rh PPh3 Ph3P R + CO R O OC + H2 Rh PPh3 PPh3 C O R - CO + CO OC Rh PPh3 Ph3P O OC R Rh C O PPh3 PPh3 Need for Excess Phosphine Ligand PPh3 Ph3P Rh +CO -PPh3 PPh3 OC H +PPh3 PPh3 Rh Inactive +CO -PPh3 CO OC H PPh3 -CO +CO -PPh3 +PPh3 -CO Rh OC H +PPh3 PPh3 -CO Ph Ph Ph Ph Rh P + H2 P Rh Rh - benzene Rh H CO highly active, not selective active, but not very selective Selective Catalyst CO Rh P Ph Ph PPh2 PPh2 PPh2 PPh2 PPh2 PPh2 Bisbi Bisbi* O O P O Naphos O P O O O PPh2 UC-44 PPh2 Xantphos Catalyst (1 mM) Init TOF (min-1) Aldehyde L:B % iso Rh/PPh3 (1:400) 13(1) 9:1 < 0.5 Rh/Bisbi (1:5) 25(2) 70:1 < 0.5 Rh/Naphos (1:5) 27(1) 120:1 1.5 Rh/Xantphos (1:5) 13(2) 80:1 5.0 [rac-Rh2H2(m-CO)2(et,ph-P4)]2+ Catalyst System [rac-Rh2H2(m-CO)2(et,ph-P4)]2+ Catalyst Fragmentation HCo(CO)4 H+ + [Co(CO)4]- strong acid in H2O, MeOH similar to HCl !!