Transcript Slide 1

Ion Beam Analysis
Part 1
Henri I. Boudinov
Instituto de Física, Universidade Federal do Rio Grande do Sul
Porto Alegre, RS, Brazil
[email protected]
26_10_2009
NanoSYD, MCI, SDU, Sønderborg , Denmark
Outline
• The Porto Alegre Ion Beam Centre
• Interaction of ions with matter
• Stopping power
• Rutherford Backskattering Spectrometry (RBS)
• Channeling
• Compositional and defect depth profiles
• Proton Induced X-ray emission (PIXE)
• Nuclear Reaction Analysis (NRA)
• Microbeam analysis
Porto Alegre Ion Beam Centre
established in 1981
• Controllable Materials Modification
• Facilities
•
•
•
•
•
•
0.2-3MV Tandetron
30-500kV Single Ended Implanter
10-250kV Medium Current Implanter
Implantation 10keV ~15MeV (up to 1mA)
Sample size up to 10cmx10cm
Hot (800oC) or cold (~LN)
• Applications
• Ion Beam Synthesis
• Buried and surface oxides and silicides
• Nanocristals
• Ion Implantation
• Defect Engineering
• Proton beam lithography
• potentially 1m resolution to 10m depths
Porto Alegre Ion Beam Centre
• Advanced Materials Analysis
• Facilities
• 3MV Tandem
• Techniques include RBS, MEIS, ERDA, PIXE, NRA
• Channelling Spectroscopy for damage analysis
• Fully automated collection and analysis
• Micro-beam with full scanning
• External Beam for vacuum sensitive samples
• Applications
• Thin Film Depth Profiling
• Compositional Analysis
• Disorder Profiling of Crystals
• 3-D elemental composition and mapping
Ion Beam for:
• •Ion
BeamScience
Modification of
Material
•Materials
Solid State Physics
• Atomic and Molecular Physics
• Ion Beam Analyses
• Basic Physics
Penetration of the Radiations in Solids
• Charged Particles
• Electrons: e-, e+, b-, b+
• Ions: p+, He++ (a), etc..
• Uncharged Particles
• X-rays and g-rays
• neutrons
10m
1m
10cm
10cm
Ion Implanter
3MV Tandetron accelerator
Penetration of charged particles through
matter
E. Rutherford, 1911
N.Bohr, 1913-54, 1948
E. Fermi, 1924H.A. Bethe, 1930F. Bloch, 1933L. Landau, 1944-
....
Experimental ingredients
Ions : Z1=-1,1,2,...~100, electrons, muons, clusters,...
energies ~1eV – 1011 eV
Target : Z2 = 1,2,.. ~100, solids, gases, liquids, plasma,...
Bohr, Bethe,...
Stopping Power
dE/dx = N.S
dE/dx – energy loss [eV/nm]
N – atomic density [nm-3]
S – stopping power [eV.nm2]
dE/dx : two types
Low energies
vion << ve : the electrons shield (passive)
Elastic Collisions
The ion lose energy
to move the target
atoms
Nuclear Stopping Power
Classic
High energies
vion ~ ve : active electrons (ionization/excitation, plasmons,...)
Inelastic Collisions
The ion lose energy
to the electrons of
the target
Electronic Stopping Power
Quantum
Electronic Energy loss (high energies)
Classical theory
dE/dx ~Z12 ln (|Z1|)
for Z1/v >> 1
Quantum theory
dE/dx ~Z12
First-order
:
for Z1/v <<1
Results from
Coupled-Channel Calculations
proton (b=1) on H(1s)
Results from
Coupled-Channel Calculations
anti-proton (b=1) on H(1s)
Transition from electronic to
nuclear stopping power
Penetration of Ions in Silicon
• Energy Loss
101
dE/dx (eV/ion/A)
E3
100
E1
E2
Target Si
(dE/dx)
e
10-1
10-2
(dE/dx)
n
10-3
10-3 10-2 10-1 100 101 102 103 104 105
E(keV)
ion
He
B
As
Bi
mass
4
11
75
209
E1
E2
E3
0,5 keV
2 keV
0,5 MeV
3 keV
17 keV
3 MeV
73 keV 800 keV 200 MeV
530 keV 6000 keV 2000 MeV
The Stopping and Range of
Ions in Matter
Software SRIM
Materials
Radiation
Analysis
Concept
•AES (electron in and out)
•RBS, MEIS, LEIS, ISS (ion in and out)
•XRF (X-ray, in and out)
•XPS (X-ray in, electron out)
•SEM/EDS (electron in, X-ray out)
•SIMS and ERDA(ion in, target out)
•PIXE (ion in, X-Ray out)
•PIGE, NRA, ...
Ion Beam Analysis (IBA)
RBS
Energy of recoiling protons give
element composition and elemental
depth profiles
1 – 3 MeV
proton
beam
STIM
Measure the energy
loss of transmitted
ions to map density
variations
Sample
PIXE
Characteristic X-ray emission
Simultaneous part-per-million
detection of trace elements
from Na to U
PIGE
Nuclear reactions give
characteristic gamma rays
from light nuclei (e.g. Li, B, F)
Rutherford BackScattering
• Energy of ions recoiling
from nuclear collisions
depends on mass and
depth
• Measure light elements
(C,N,O) and thickness or
depth profiles
• MDL around 0.1%, but can
be used to help quantify
PIXE
Incident Ion
Sample
To detector
C
RBS
O
Na
Cl
Spectrum of 2m diameter marine
aerosol particle showing sodium and
chlorine and carbon and oxygen from
the plastic support film
Backscattering
Spectrometry
Yield
• Concentration
Energy
•Element (K)
•Depth (dE/dx)
K = E1 /E0
E1
E0
E = E0 – dE/dx(in) x / cos 1
x
E0
E1 = K E - dE/dx(out) x / cos 2
E

1
2
KE
x=
E1
K E 0 - E1
K dE/dx(in) / cos 1 + dE/dx(out) / cos 2
RBS profiling
1
2
i.
number of collisions
ii.
impact parameter
iii. charge state
3
Dx
iv.
...
i.
roughness
ii.
detector parameters
iii. beam spot
iv. ....
Physics
Fluctuations
Energy straggling
Multiple scattering
Detector aceptance
Beam spot
10
8
Counts
6
4
E11
KE00
2
0
0
2
4
6
Energy
8
10
monocrystal
Thin Film Analysis
1. Structural information (near surface region)
2. Increased sensitivity to light impurities
Surface Peak
+
+
He (1.2 MeV) ® SIMOX
H (100keV) + SIMOX
20000
600
random
channeling <100>
15000
500
High resolution
Counts
Counts
400
10000
300
200
5000
100
0
0
240
260
280
Channel
RBS
300
320
55
60
65
70
75
keV
MEIS
80
85
90
MEIS
RTA 1000ºC/10s
2.5
SIMOX
Si
Si
2.0
O
1.5
Counts
1.0
As
0.5
0.0
FA 950ºC/15min
2.5
SIMOX
Si
2.0
1.5
1.0
0.5
0.0
Si peaks:75
80
85
90
Energy (keV)
• SIMOX better than Si
• RTA better than FA
95
100
As+ 20keV, 5E14 cm-2 + annealing:
RTA 1000C/10s or FA 950C/15min
Rutherford backscattering
spectrometry (RBS)
•Nondestructive and multielemental analysis technique
•Elemental composition (stoichiometry) without a standard (1-5%
accuracy).
•Elemental depth profiles with a depth resolution of 5 - 50
nanometers and a maximum depth of 2 - 20 microns.
•Surface impurities and impurity distribution in depth (sensitivity
up to sub-ppm range).
•Elemental areal density and thus thickness (or density) of thin
films if the film density (or thickness) is known.
•Diffusion depth profiles between interfaces up to a few microns
below the surface.
•Channeling-RBS is used to determine lattice location of
impurities and defect distribution depth profile in single crystalline
samples
Elastic Recoil Detection Analysis
Proton Induced X-ray
Emission
Characteristic X-ray
photon
Ejected electron
• Analogous to EDS using
MeV protons
• No primary
bremsstrahlung, so low
detection limits (1-10ppm)
• Can be made quantitative
K
PIXE
Ca
Fe
Cu Zn
PIXE
Target
(Ca)
Beam
Detector
Electronics
Counts
Ka
Kb
Energy
1000000
Buffalo River Sediment (NIST 8704)
Si
100000
FeKa
Al
CaKa
K
CaKbTi
Counts/C
10000
Mg
TiKb
S
Na
1000
FeKb
Ka
Mn
Cr
ZnKa
Cu
Ni
ZnKb
100
10
PbLa
Sr
PbLb Rb
Ka
RbKb
1
0
2
4
6
8
10
Energy (keV)
12
14
16
Applications
 Microelectronics
 Environmental sciences
 Food processing
 Biological tissues
 Biotechnology
 Archaeology - Art
 Earth Sciences
Proton Induced Gamma Ray
Emission
p
• MeV protons can tunnel through the
Coulomb barrier of light nuclei to
induce gamma emitting nuclear
reactions
• Gamma energy is characteristic of
specific isotopes
• Detection limits ~ 0.1 %
• Useful for specific problems (e.g. F19,
B10/B11)
F19(p,ag)O16
19
F
Intermediate
Ne20 nucleus in
excited state
Ne20
a
Decays to O16 + alpha
particle and emits
characteristic gamma rays
^3
g
O16
f:\pc_users\jpn\971118\490001g4._ :
F
Tourmaline std: GRR573
F
Li
Al
B10
PIGE
Al
^2
Na
^1
Tourmaline standard GRR573
^0
100
300
500
700
900
1100
1300
1500
1700
Nuclear Reaction Analysis (NRA)
p + 18O ®15N + 4He
Nuclear Microscopy
Beam from
Accelerator
Lens
Sample
Detectors
Scanning
system
Map array
Y
Image in
computer
memory
X
• All types of data can be collected
simultaneously
Scanning Transmission Ion
Microscopy
Energy
High
Low
STIM
• Energy loss of transmitted ions
depends on thickness and
density.
• Use energy loss mapping to
image the structure of thin
samples (up to 30m).
• (No chemical information)
STIM image of the
leg and claw of a
wasp showing
internal detail