Transcript Folie 1
Jet Propagation & Mach Cone Evolution in (3+1)d Ideal Hydrodynamics Barbara Betz, Miklos Gyulassy, Dirk Rischke, Horst Stöcker and Giorgio Torrieri 05 / 02 / 08 Yale Columbia Day, Yale University Outline I. Motivation: Jets in heavy-ion collisions II. Jets in (3+1)d ideal hydrodynamics • Different energy-momentum deposition scenarios Particle Correlation Pattern III. Conclusions, Outlook & Open Questions 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Jets & Medium Response • Jet suppression: signal for QGP • Re-appearance of the away-side for low and intermediate pTassoc 4 < pTtrigger < 6 GeV/c pTassoc > 2 GeV/c STAR PRL 91 (2003) 072304 4 < pTtrigger < 6 GeV/c Au+Au / p+p s= PHENIX arXiv:0705.3238 [nucl-ex] 0.15 < pTassoc < 4 eV/c 200 GeV STAR, Nucl. Phys. A774, 129 (2006) • Peaks reflect interaction of jet with medium 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Jets & Deposition Scenarios Solve numerically (3+1)d ideal hydrodynamics: μΤ μν S ν ν Source term S given by jet energy loss Different models describing jet energy loss R. Baier et al., Nucl. Phys. B438, 291 (1997) M. Gyulassy et al., Nucl. Phys. B571, 197 (2000) J. Casalderrey-Solana et al., Nucl. Phys. A 774, 577 (2006), arXiv: 0705.1352 [hep-ph] H. Liu et al., PRL 97, 182301 (2006) A. Majumder et al., PRL 99, 192301 (2007) T. Renk et al., Phys. Rev. C75, 054910 (2007) G.-Y. Qin et al., Phys. Rev. C76, 064907 (2007) R. Neufeld et al., arXiv: 0802.2254 [hep-ph] 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Deposition Scenarios Hydro We use: τf ν S dP ν dτ ν P (E, M ) δ (4) μ μ (x - x ( τ )) d τ μ μ τi Written non-covariantly ν S 1 ( 2 π σ) 3 2 ( r x ) dE dM exp , ,0,0 2 dx 2σ dx Different deposition scenarios 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University μ x ( τ ) x 0 u jet τ Jets in (3+1)d Ideal Hydro Neglect near-side jet Study jet evolution in a homogeneous, non– expanding background • Bag model EoS for QGP • Energy-momentum deposition for 0 Isochronous freeze-out at t 7.2 fm/c E dN 3 d p 05 / 02 / 08 μ p dσ μ f(x, p) Barbara Betz Yale Columbia Day, Yale University t 4.5 fm/c On-Shell Deposition I dE dx dM dx Peak in jet direction 10 GeV fm Are we done? Source unknown Distribution function unknown 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University On-Shell Deposition II dE dx dM dx 10 GeV 2 p fm T 5 GeV/c dE Diffusion wake causes • peak in forward direction J. Casalderrey-Solana et al. dx 12.6 GeV fm dE dx 2 GeV fm J. Casalderrey-Solana et al., Nucl. Phys. A 774, 577 (2006) 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Energy-Momentum Relation 2 2 2 On-shellness: E p m Heisenberg’s uncertainty relation: Δx Δp /2 Radiative energy loss Δx small 2 Δp 2 large 2 2 2 E (p Δp ) m p 2p Δp Δp m Δm 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University 2 2 Off-Shell Deposition I dM dx 05 / 02 / 08 dE dE dx dx 10 GeV dM fm dx 1 dE dM 2 dx dx Barbara Betz Yale Columbia Day, Yale University 0 Off-Shell Deposition II dE dx 1.4 GeV fm Mach cone–like pattern for dM/dx dE/dx Transverse momentum loss 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Pure Energy Loss I dE dx 10 GeV fm Cone–like structure 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Pure Energy Loss II dE dx Need high–pT cuts 1.4 GeV fm Otherwise thermal smearing washes out signal due to high background temperature 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Pure Energy Loss III • Pure Energy Deposition – Mach cone pattern • More pronounced: – higher dE/dx or pT – consistent with J. C.-S. et al. 1 p 0.2 p 2 p 3 p T T T T 2 GeV/c 1 GeV/c 3 GeV/c 4 GeV/c J. Casalderrey-Solana et al., Nucl. Phys. A 774, 577 (2006) 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University dE dx 10 GeV fm Conclusions Mach cone correlation pattern - appears only if dM/dx dE/dx otherwise: Diffusion wake kills the Mach cone–like pattern - is not visible for cuts similar to experiment if dE/dx 10 GeV/fm 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University Open Questions & further investigations: • energy–momentum deposition scenario – Transverse momentum loss – Spatial dependence – Interaction of jet with medium • expanding medium – Radial flow – Elliptic flow Effect of disentangling? • Neglecting near-side? 05 / 02 / 08 Barbara Betz Yale Columbia Day, Yale University