Transcript Folie 1
Jet Propagation &
Mach Cone Evolution
in (3+1)d Ideal Hydrodynamics
Barbara Betz,
Miklos Gyulassy, Dirk Rischke, Horst Stöcker and Giorgio Torrieri
05 / 02 / 08
Yale Columbia Day, Yale University
Outline
I.
Motivation: Jets in heavy-ion collisions
II.
Jets in (3+1)d ideal hydrodynamics
•
Different energy-momentum deposition
scenarios
Particle Correlation Pattern
III. Conclusions, Outlook & Open Questions
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Jets & Medium Response
• Jet suppression:
signal for QGP
• Re-appearance of the
away-side for low and
intermediate pTassoc
4 < pTtrigger < 6 GeV/c
pTassoc > 2 GeV/c
STAR PRL 91 (2003) 072304
4 < pTtrigger < 6 GeV/c
Au+Au / p+p
s=
PHENIX arXiv:0705.3238 [nucl-ex]
0.15 < pTassoc < 4 eV/c
200 GeV
STAR, Nucl. Phys. A774, 129 (2006)
• Peaks reflect interaction of jet with medium
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Jets & Deposition Scenarios
Solve numerically (3+1)d ideal hydrodynamics:
μΤ
μν
S
ν
ν
Source term S given by jet energy loss
Different models describing jet energy loss
R. Baier et al., Nucl. Phys. B438, 291 (1997)
M. Gyulassy et al., Nucl. Phys. B571, 197 (2000)
J. Casalderrey-Solana et al., Nucl. Phys. A 774, 577 (2006), arXiv: 0705.1352 [hep-ph]
H. Liu et al., PRL 97, 182301 (2006)
A. Majumder et al., PRL 99, 192301 (2007)
T. Renk et al., Phys. Rev. C75, 054910 (2007)
G.-Y. Qin et al., Phys. Rev. C76, 064907 (2007)
R. Neufeld et al., arXiv: 0802.2254 [hep-ph]
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Deposition Scenarios Hydro
We use:
τf
ν
S
dP
ν
dτ
ν
P (E, M )
δ
(4)
μ
μ
(x - x ( τ )) d τ
μ
μ
τi
Written non-covariantly
ν
S
1
( 2 π σ)
3
2
( r x ) dE
dM
exp
,
,0,0
2
dx
2σ
dx
Different deposition scenarios
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
μ
x ( τ ) x 0 u jet τ
Jets in (3+1)d Ideal Hydro
Neglect near-side jet
Study jet evolution in a homogeneous, non–
expanding background
• Bag model EoS for QGP
• Energy-momentum deposition for 0
Isochronous freeze-out at t 7.2 fm/c
E
dN
3
d p
05 / 02 / 08
μ
p dσ μ f(x, p)
Barbara Betz
Yale Columbia Day, Yale University
t 4.5 fm/c
On-Shell Deposition I
dE
dx
dM
dx
Peak in jet direction
10
GeV
fm
Are we done?
Source unknown
Distribution function unknown
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
On-Shell Deposition II
dE
dx
dM
dx
10
GeV
2 p
fm
T
5 GeV/c
dE
Diffusion wake causes
• peak in forward direction
J. Casalderrey-Solana et al.
dx
12.6
GeV
fm
dE
dx
2
GeV
fm
J. Casalderrey-Solana et al., Nucl. Phys. A 774, 577 (2006)
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Energy-Momentum Relation
2
2
2
On-shellness: E p m
Heisenberg’s uncertainty relation:
Δx Δp /2
Radiative energy loss
Δx small
2
Δp
2
large
2
2
2
E (p Δp ) m p 2p Δp Δp m
Δm
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
2
2
Off-Shell Deposition I
dM
dx
05 / 02 / 08
dE
dE
dx
dx
10
GeV
dM
fm
dx
1 dE
dM
2 dx
dx
Barbara Betz
Yale Columbia Day, Yale University
0
Off-Shell Deposition II
dE
dx
1.4
GeV
fm
Mach cone–like pattern for dM/dx dE/dx
Transverse momentum loss
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Pure Energy Loss I
dE
dx
10
GeV
fm
Cone–like structure
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Pure Energy Loss II
dE
dx
Need high–pT cuts
1.4
GeV
fm
Otherwise thermal
smearing washes out
signal due to high
background temperature
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Pure Energy Loss III
• Pure Energy Deposition
– Mach cone pattern
• More pronounced:
– higher dE/dx or pT
– consistent with J. C.-S. et al.
1 p
0.2 p
2 p
3 p
T
T
T
T
2 GeV/c
1 GeV/c
3 GeV/c
4 GeV/c
J. Casalderrey-Solana et al., Nucl. Phys. A 774, 577 (2006)
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
dE
dx
10
GeV
fm
Conclusions
Mach cone correlation pattern
- appears only if dM/dx dE/dx
otherwise: Diffusion wake kills the Mach
cone–like pattern
- is not visible for cuts similar to experiment if
dE/dx 10 GeV/fm
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University
Open Questions
& further investigations:
• energy–momentum deposition scenario
– Transverse momentum loss
– Spatial dependence
– Interaction of jet with medium
• expanding medium
– Radial flow
– Elliptic flow
Effect of disentangling?
• Neglecting near-side?
05 / 02 / 08
Barbara Betz
Yale Columbia Day, Yale University