Transcript Document

Recent Results from the BRAHMS
Experiment at RHIC
Paweł Staszel, Jagellonian University
for the BRAHMS Collaboration
Eighth Workshop on Non-Perturbative QCD
Paris, 7 – 11 June, 2004
The Relativistic Heavy Ion Collider
BRAHMS
Top energy:
sNN=200GeV
BRAHMS
Au+Au
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
d+Au
p+p
BRAHMS
2
The BRAHMS Collaboration
I.G. Bearden7, D. Beavis1, C. Besliu10, B. Budick6, H. Bøggild7 , C. Chasman1,
C. H. Christensen7, P. Christiansen7, J.Cibor4, R.Debbe1, E. Enger12,
J. J. Gaardhøje7, M. Germinario7, K. Hagel8, O. Hansen7, A.K. Holme12, H. Ito11,
A. Jipa10, J. I. Jordre10, F. Jundt2, C.E.Jørgensen7, R. Karabowicz3, E. J. Kim5,
T. Kozik3, T.M.Larsen12, J. H. Lee1, Y. K.Lee5, G. Løvhøjden2, Z. Majka3,
A. Makeev8, B. McBreen1, M. Mikkelsen12, M. Murray8, J. Natowitz8, B.S.Nielsen7,
K. Olchanski1, D. Ouerdane7, R.Planeta4, F. Rami2, D. Röhrich9, B. H. Samset12,
D. Sandberg7, S. J. Sanders11, R.A.Sheetz1, P. Staszel3,7, T.S. Tveter12,
F.Videbæk1, R. Wada8, Z. Yin9, and I. S. Zgura10
1Brookhaven
National Laboratory, USA, 2IReS and Université Louis Pasteur, Strasbourg, France
3Jagiellonian University, Cracow, Poland, 4Institute of Nuclear Physics, Cracow, Poland
5Johns Hopkins University, Baltimore, USA, 6New York University, USA
7Niels Bohr Institute, University of Copenhagen, Denmark
8Texas A&M University, College Station. USA, 9University of Bergen, Norway
10University of Bucharest, Romania, 11University of Kansas, Lawrence,USA
12 University of Oslo Norway
50 physicists from 12 institutions
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
3
Agenda of this talk
General Characteristics of the Au+Au sNN=200GeV
- particle production
- nuclear stopping
- statistical model description (particle ratios)
- transvers dynamics (particle pt spectra)
Nuclear modification of spectra Au+Au (QGP)
Rapidity evolution of nuclear modification for
d+Au (CGC)
Summary
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
4
Charged Particle Multiplicity
0-5%
5-10%
10-20%
20-30%
30-40%
0-5% central Au+Au:
Total charged particle
multiplicity: 4630370
(PRL 88, 202301(2002))
50% increase over p+pbar
(UA5)
40-50%
p+p
Energy density: Bjorken 1983
eBJ = 3/2 (<Et>/ pR2t0) dNch/dh
 4.0 GeV/fm3
(<Et>=0.5GeV, t0=1fm/c)
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
5
Limiting Fragmentation
Shift the dNch/d distribution by the beam rapidity, and scale by Npart.
Lines up with lower energy  limiting fragmentation
Au+Au sNN=200GeV (0-5% and 30-40%)
Au+Au sNN=130GeV (0-5%)
Pb+Pb sNN=17GeV (9.4%)
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
6
Baryon stopping
y = yb - y
y = 2.03  0.16
y = 2.00  0.1
Gaussians in pz
6 order polynomial

yp
yp
mT
dN( B B )
y
dy
cosh y dy
Total E=25.72.1TeV
72GeV per participant
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
7
Baryon stopping II
y =0.58yp
LHC
?
y = 2.2, E/A=2800GeV
broken
Sscaling
NN=63 GeV
(Ebeam/A=3500GeV, yp=8.9)
???
8.9
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
8
Chemical freeze-out
Kinetic freeze-out
PRL90,102301 (2003)
•At y=0: p-/p+ = 1.0, K-/K+ = 0.95 ±0.05
pbar/p = 0.75 ±0.04
•Good statistical model description with
B= B(y),
• At |y|<1 materanti-matter
Phys. Rev. Lett. 90, 102301(2003)
T115 Mev, T0.7c at y=0
• Flow velocity decreases with rapidity.
Lower density  lower pressure  less flow
• Temperature increases with rapidity.
Lower density  faster freeze out 
higher temperature
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
9
High pt Suppression  Jet Quenching
 Particles with high pt’s (above ~2GeV/c)
are primarly produced in hard scattering
processes early in the collision
 Probe of the dense and hot stage
 p+p experiments  hard scattered
Schematic view of jet production
hadrons
leading
particle
q
partons fragment into jets of hadrons
q
 In A-A, partons traverse the medium
 If QGP  partons will lose a large
part of their energy
(induced gluon radiation)
 Suppression of jet production
 Jet Quenching
leading particle
Experimentally  depletion of the high pt region in hadron spectra
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
10
Charged hadron invariant spectra
BRAHMS, PRL91(2003)072305
Nuclear Modification Factor
RAA =
h=
0
h=
2.
2
Yield(AA)
NCOLL(AA)  Yield(NN)
Scaled N+N reference
RAA<1  Suppression relative to
scaled NN reference
 Reference spectrum
p+pbar spectra (UA1)
 SPS:
data do not show suppression
enhancent (RAA>1) due to initial state
multiple scatering (“Cronin Effect”)
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
11
High pt suppression in Au+Au @ SNN=200 GeV
BRAHMS, PRL91(2003)072305
mid-rapidity (=0)
 At central collisions clear suppression
 At peripheral no suppression (as expected)
forward rapidity (=2.2)
 the same trend
no p+p reference large sys. errors
RCP=
Yield(0-10%)/NCOLL(0-10%)
Yield(40-60%)/NCOLL(4060%)
RCP shows suppression at both
=0 and =2.2
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
12
Control measurement: d+Au @ SNN=200
Suppression in AuAu due
to Jet Quenching or due to
Initial State Parton
Saturation (CGC)?
What about d+Au?
- Jet Quenching – No
- CGC
- Yes/No?
Excludes alternative interpretation
in terms of Initial State Effects
 Supports the Jet Quenching for
central Au+Au collisions
+ back-to-back azimuthal correlation
by STAR
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
13
Hirano & Nara (nucl-th/0307087)
Data versus
Hydro-Jet Model
i Hydro  description of the soft
part of the produced matter
ii Hard part  use a pQDC model
(PYTHIA)
i+ii – generation of jets is evolving
medium
Reasonable description
of data at both =0 and =2.2
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
14
Evolution of RdAu with rapidity
nucl-ex/0403005
Cronin like enhancement at =0
Clear suppression at =3.2
Low pt consistent with measured dNch/d
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
15
pQCD versus data @  = 3.2
A. Accardi, M. Gyulassy,
nucl-th/0402101
Geometrical
shadowing with
opacity from fit to
PHENIX (y~0, p0)
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
16
Color Glass Condensate explanation
=0
=1
D. Kharzeev at al.
hep-ph/0405045
quark dipole-nucleus
scattering amplitude
Two free parameters fitted to
data:
y0 – onset of saturation
c - onset of quantum regime
=2.2
=3.2
Overal good description
of RdAu
With general trend of
RdAu  1/Npart, this model
accounts also for resonable
description of RCP
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
17
Rapidity dependence for d+Au
Submitted to PRL nucl-ex/0401025
Curves: Saturation Model from Kharzeev, Levin, Nardi NPA730 (2004) 448
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
18
Summary
 Large hadron multiplicies
 Almost a factor of 2 higher than at SPS ( higher )
 Much higher than in pp ( medium effects)
 Identified hadron spectra
 Broken lower energy scaling of rapidity loss
 Good description by statistical model
 large transvers flow
 Suppression of high pt particles in central Au+Au collisions
observed at =0 and 2.2
 Consistent with a Jet Quenching scenario
 Evolution of nuclear modification in d+Au data
 absence of the suppression in d+Au data at =0 supports
Jet Quenching scenario
 forward data consistent with onset of suppression in the
Color Glass Condensate
P. Staszel - Jagellonian University, Kraków
Eighth Workshop on Non-Perturbative QCD, Paris 2004
BRAHMS
19