Transcript Document

Phases of matter in
the BRAHMS experiment
Paweł Staszel,
Marian Smoluchowski Institute of Physics
Jagiellonian University
for the BRAHMS Collaboration
XXXIII International Conference
On High Energy Physics
Moscow, 26.07 – 2.08.2006
Outline
1. Detector setup.
2. General (bulk) characteristics of nucleus-nucleus
reactions.
3. Nuclear modification at mid-rapidity
4. Nuclear modification at forward rapidity
5. Elliptic Flow
6. Summary.
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
2
2
Relativistic Heavy Ion Collider
PHOBOS
BRAHMS
PHENIX
STAR
energies:
sNN=200GeV,
sNN=62GeV
Au+Au
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
Cu+Cu
d+Au
p+p
BRAHMS
3
3
Broad Range Hadron Magnetic Spectrometers
Flow Ring 2
Si Ring 1
Tile Ring 1
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
4
4
Particle production and energy loss
Energy density: Bjorken 1983
eBJ = 3/2 (<Et>/ pR2t0) dNch/d
assuming formation time t0=1fm/c:

yp
yp
mT
dN( B B )
y
dy
cosh y dy
>5.0 GeV/fm3 for AuAu @ 200 GeV
Total E=25.72.1TeV
>4.4 GeV/fm3 for AuAu @ 130 GeV
72GeV per participant
>3.7 GeV/fm3 for AuAu @ 62.4 GeV
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
5
5
Primary versus produced matter
BRAHMS
NA49
AGS
At 200GeV
created matter is at picked at y=0
primary matter is concentrated
around y3 (y2.2)
• longitudinal net-kaon evolution similar as net-proton
in |y|< 3 at RHIC (AuAu @ 200 GeV)
• strong “association”: net-kaon / net-lambda /net-proton?
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
6
6
High pt suppression  jet quenching
 Particles with high pt’s (above ~2GeV/c)
are primarily produced in hard scattering
processes early in the collision
 p+p experiments  hard scattered
partons fragment into jets of hadrons
Schematic view of jet production
hadrons
leading
particle
q
q
 In A-A, partons traverse the medium
 Probe of the dense and hot stage
 If QGP  partons will lose a large
part of their energy
(induced gluon radiation)
 suppression of jet production
 Jet Quenching
leading particle
Experimentally  depletion of the high pt region in hadron spectra
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
7
7
Charged hadron invariant spectra
Nuclear Modification Factor
RAA =
Yield(AA)
NCOLL(AA)  Yield(NN)
Scaled N+N reference
RAA<1  Suppression relative to
scaled NN reference
 SPS:
AuAu @200GeV
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
data do not show suppression
enhancement (RAA>1) due to initial state
multiple scattering (“Cronin Effect”)
BRAHMS
8
8
Energy and System Dependent
Nuclear Modification Factors at h~0 and 1
• R AuAu (200 GeV) < RAuAu(63 GeV) < RCuCu(63 GeV) for charged hadrons
• p+p at 63 GeV is ISR Data (NPB100), RHIC-Run6 will provide better reference
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
9
9
Control measurement: d+Au @ sNN=200
Suppression in AuAu due
to Jet Quenching or due to
Initial State Parton
Saturation (CGC)?
What about d+Au?
- Jet Quenching – No
- CGC
- Yes/No?
Excludes alternative interpretation
in terms of Initial State Effects
 Supports the Jet Quenching for
central Au+Au collisions
+ back-to-back azimuthal correlation
by STAR
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
10
10
Nuclear modification factors (RCP, RAuAu)
for p,K,p at y~3.1
• Suppression for pions and kaons: RAuAu: p < K < p
• RAuAu ≠ Rcp (<Ncoll>,<Npart> for 40-60% ~ 70,56)
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
11
11
RAuAu(Y=0) ~ RAuAu(y~3)
for central Au+Au at √s = 200 GeV
• R AuAu (Y=0) ~ RAuAu(y~3) for pions and protons: accidental?
• Rapidity dependent interplay of Medium effect + Hydro + baryon transport
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
12
12
... more on RAA rapidity dependence
•Similar level of suppresion for
central collisions
•At forward rapidity RAA shows
stronger rise towards peripheral coll.
(surface -> volume emmission)
Looking for scaling: dN/d ?
BE: eBJ = 3/2 (<Et>/ St0) dNch/d
S is transwers area of overlaping region
<Et> dirived from p and K spectra
Is the energy density the only parameter
that controls RAA?
New pp data @62GeV will allow for
various comparisions at the same
rapidities
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
13
13
Flowing at forward
dN
ddptd =
dN
1
ddpt 2p (1 + 2v1cos + 2v2(,pt)cos2)
v2 for pion
• Understanding missing low-pt fraction is
important for integrated v2 from FS
• Kaon and proton v2 will come:
Statistically Challenging
• v2(y~0) ~ v2(y~3) for 0.5<pT<2 GeV/c
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
14
14
Examine d+Au at all rapidities
I. Arsene et al., BRAHMS PRL 93 (2004) 242303.
suppression
Cronin enhancement
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
15
15
RdAu and RAA for anti-protons and pions @200
BRAHMS PRELIMINARY
• suppression for p- but stronger for AuAu
• both RdA and RAA show enhancement for p-bar
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
16
16
Summary
Strong transverse/elliptic
flow in y<3
High energy density >>
nuclear density
Limiting
fragmentation
(local) Chemical equilibration
Onset of gluon saturation?
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
- y  2
- 25 TeV left for
particle production
Non-hadronic energy loss
through the medium in |y|<3:
BRAHMS
17
17
The BRAHMS Collaboration
I.Arsene7, I.G. Bearden6, D. Beavis1, S. Bekele6 , C. Besliu9, B. Budick5,
H. Bøggild6 , C. Chasman1, C. H. Christensen6, P. Christiansen6, R. Clarke9, R.Debbe1,
J. J. Gaardhøje6, K. Hagel7, H. Ito10, A. Jipa9, J. I. Jordre9, F. Jundt2, E.B. Johnson10,
C.E.Jørgensen6, R. Karabowicz3, N. Katrynska3, E. J. Kim4, T.M.Larsen11, J. H. Lee1,
Y. K. Lee4, S.Lindal11, G. Løvhøjden2, Z. Majka3, M. Murray10, J. Natowitz7, B.S.Nielsen6,
D. Ouerdane6, R.Planeta3, F. Rami2, C. Ristea6, O. Ristea9, D. Röhrich8,
B. H. Samset11, D. Sandberg6, S. J. Sanders10, R.A.Sheetz1, P. Staszel3,
T.S. Tveter11, F.Videbæk1, R. Wada7, H. Yang6, Z. Yin8, and I. S. Zgura9
1Brookhaven
National Laboratory, USA, 2IReS and Université Louis Pasteur, Strasbourg, France
3Jagiellonian University, Cracow, Poland,
4Johns Hopkins University, Baltimore, USA, 5New York University, USA
6Niels Bohr Institute, University of Copenhagen, Denmark
7Texas A&M University, College Station. USA, 8University of Bergen, Norway
9University of Bucharest, Romania, 10University of Kansas, Lawrence,USA
11 University of Oslo Norway
48 physicists from 11 institutions
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
18
18
BACKUP SLIDES
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
19
19
Anti-particle to particle ratios

Chemical freeze-out
BRAHMS PRELIMINARY
BRAHMS PRELIMINARY
• pbar/p verus K-/K+ : good statistical model
•At 200 GeV: p-/p+ = 1.0, K-/K+ = 0.95,
pbar/p = 0.75
•At 62 GeV: p-/p+ = 1.0, K-/K+ = 0.84,
pbar/p = 0.45,
• At |y|<1 matterantimatter
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
description with B= B(y) with T~170MeV
•But this describes also energy depencency at
y=0  only B controls the state of matter
•STAR and NA47 measures pbar/p versus
-/+
It is not true for p+p
BRAHMS
20
20
K-/K+ and antihyperon/hyperon
K-/K+ = exp((2s - 2u,d)/T)
pbar/p = exp(-6u,d/T)
s=0 
K-/K+ = (pbar/p)1/3
Fit shows that K-/K+ = (pbar/p)1/4
 s= ¼ u,d
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
How s= ¼ u,d will work for
hyperons?
Hbar/H = (pbar/p)3/4 for Lambdas
= (pbar/p)1/2 for Xis
= (pbar/p)1/4 for Omegas
BRAHMS
21
21
RAuAu 200 GeV
Cronin enhancement
suppression at high pT
significant medium effects
P. Staszel - Jagiellonian
University,
Kraków
BRAHMS,
PRL 91, 072305
(2003)
ICHEP, Moscow 2006
BRAHMS
22
22
pbar/p-
scaling with Npart
sNN=200GeV
Strong rapidity
dependence
pp
pp
CuCu data consistent with
AuAu for the same Npart
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
23
23
K/p ratios at =3.1, Au+Au @200GeV
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
24
24
Strong energy absorption model from a static 2D matter
source. (Insprired by A.Dainese (Eur.Phys.J C33,495) and A.Dainese ,
C.Loizides and G.Paic (hep-ph/0406201) )
• Parton spectrum using pp reference spectrum
• Parton energy loss E ~ q.L**2
• q adjusted to give observed RAA at ~1.
The change in dN/d will result in slowly rising RAA .
The modification of reference pp spectrum causes the RAA to be
approximately constant as function of  .
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
25
25
Summary
 Large hadron multiplicities
 Almost a factor of 2 higher than at SPS energy( higher )
 Much higher than pp scaled results( medium effects)
 Identified hadron spectra
 Good description by statistical model
 Large transverse flow consistent with high initial density
v2(pt) is seem to not depend on rapidity
p/p
 show strong  dependency
 for given energy depend only on Npar
High-pT
 suppression increases with energy for given centrality bin
 weak dependency on rapidity of RAA which is consistent with surface
jet emission
 RCP can hide or enhance nuclear effects
 At y=3.2 RAA shows larger suppression than RdA
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
26
26
FS PID using RICH
Multiple settings
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
27
27
RdAu Update: Identified Particle RdAu at y~3
+ blue
- red
BRAHMS Preliminary
• RdAu of identified particle consistent with published h- results
• dAu(p-)/dAu(p+):
Valance
P. Staszel
- Jagiellonian University,
Kraków quark isospin dominates in pp?
ICHEP, Moscow 2006
BRAHMS
28
28
Limiting Fragmentation
Shift the dNch/d distribution by the beam rapidity, and scale by Npart.
Lines up with lower energy  limiting fragmentation
Au+Au sNN=200GeV (0-5% and 30-40%)
Au+Au sNN=130GeV (0-5%)
Pb+Pb sNN=17GeV (9.4%)
P. Staszel - Jagiellonian University, Kraków
ICHEP, Moscow 2006
BRAHMS
29
29