Folie 1 - uni

Download Report

Transcript Folie 1 - uni

2.34
2.34 Modelle
2.341 Ein einfaches Energiebilanz Modell (EBM)
2.342 Komplexere Modele
2.343 Virtueller Gastvortrag von Prof. Broccoli, USA:
Atmospheric General Circulation Modeling
Coupled General Circulation Modeling
2.344 Übersicht über komplexere Modelle
GHG= Greenhouse Gas
Hauruck Modell für mittlere Temperatur der Erdoberfläche
1. Parameter
Stefan-BoltzmannKonstante
Emissionsfaktor
Solare Einstrahlung
auf m^2 Kugeloberfläche
direkte Rückstrahlung, Albedo
absorbierte Solarstrahlung
Goto spielen
sigma= 5,7E-08 [W/m^2/K^4]
eps=
1,00
S0=
E0=
A=
E=
1370 [W/m^2]
342,5 [W/m^2] =S0 / 4
0,30 [W/m^2]
239,8 [W/m^2] = (1 - A ) * E0
2.Stefan Boltzmann Gesetz für schwarzen Körper:
P = sigma *( T 1^4 - T 2^4 )
P = sigma *T 1^4
sofern T2 --> 0
T 1 = Wurzel(Wurzel(P/sigma))
3. Stefan Boltzmann Gesetz für graue Körper:
sei T 2 = 0 -->
P = eps * sigma *(T 1^4 - T 2^4)
T 1 = Wurzel(Wurzel(P/ (eps*sigma)))
5. Strahlungsgleichgewicht: Absorption solar = thermische i.r. Ausstrahlung der grauen Erde
Gleichgewicht:
P=E
P=
239,8 [W/m^2] = E
T1= 255,002
-18
[K] =WURZEL(WURZEL(P/eps/sigma))
[°C] =Z(-1)S-273,15
2.341
A simple model of the greenhouse effect
FS = 1370 [W/m^2] solar constant
F0 = 1/4 * (1-A)* FS
F0
Fa
Ta
Solar
transmittance
s
t*Fg
Atmosphere
thermal emittance = (1-
thermal
transmittance
t )
Fa
Fa = (1- t )*  Ta4
s*F0
Fg =  Tg4
Fg
Tg
Ground
Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2
t
A simple model of the greenhouse effect:
Bilance at the top of the atmosphere:
F0 = Fa + t*Fg
(1)
F0
t*Fg
Fa
Ta
Solar
transmittance
s
thermal
transmittance
Atmosphere
thermal emittance = (1-
t )
Fa
s*F0
Bilance at the ground:
s*F0 + Fa = Fg
Tg
Ground
Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2
(2)
Fg
t
[Kirchhoff‘s law]
A simple model of the greenhouse effect:
Bilance at the top of the atmosphere:
(1) F0 = Fa + t*Fg
Bilance at the ground:
(2) Fg = Fa + s*F0
Fa aus (1) in (2) einsetzen : Fg = [F0 -
t*Fg ]+ s*F0
Fg = F0 * (1+ s ) / ( 1+ t)
andererseits gilt:
Also :
Fg =  Tg4
 Tg4= F0 * (1+ s ) / ( 1+ t)
Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2
A simple model of the greenhouse effect:
Also :
 Tg4 = F0 * (1+ s ) / ( 1+ t)
Zahlenwerte: s = 0,9 ;
ferner:
t = 0,2
; Albedo A=0,3
F0 = 1/4 * (1-A)* FS = 0,7* 1370/ 4 = 0,7* 340 = 240 [W/m2]
 = 5,67 *10- 8 [Wm-2K-4]
Tg = 286 [K]
The close agreement with Tg = 288 [K] is partly fortuitous, since in
reality non radiative processes also contribute to the energy balance
Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2
Modell mit einfacher Atmosphäre
1. Parameter
Stefan-BoltzmannKonstante
Emissionsfaktor
Solare Einstrahlung:
auf m^2 Kugeloberfläche : =S0 / 4
direkte Rückstrahlung, Albedo
Einstrahlung oben : (1 - A ) * S0/4 =
Solare Einstrahlung am Grund
Goto spielen
sigma=
eps=
5,7E-08 [W/m^2/K^4]
0,95
S0=
E0=
1370 [W/m^2]
342,5 [W/m^2]
A=
0,33 [W/m^2]
F0= 229,475 [W/m^2]
2. Spezielle Parameter des Modells
Transmission (solar) der Atmosphäre
tau_s=
0,9
Transmission (thermisch) der Atmosphäre
tau_t=
0,2
tau_Faktor= 1,58333
5. Strahlungsgleichgewicht:
Gleichgewicht:
P= sigma Tg^4 = Fo *tau_Faktor
P=
363,3 [W/m^2]
Tg= 282,931
Tg=
10
[K]
[°C]
2.342 Komplexere Modelle
Komplexere Modelle
Geographic resolution characteristic of climate Models of the generations of
climate models used in the IPCC Assessment Re-ports:
FAR (IPCC, 1990), SAR (IPCC, 1996), TAR (IPCC, 2001a), and AR4 (2007).
The figures above show how successive generations of these global models
increasingly resolved northern Europe.
These illustrations are representative of the most detailed horizontal resolution
used for short-term climate simulations.
The century-long simulations cited in IPCC Assessment Reports
after the FAR were typically run with the previous generation’s resolution.
Vertical resolution in both atmosphere and ocean models is not shown,
but it has increased comparably with the horizontal resolution, beginning
typically with a single-layer slab ocean and ten atmospheric layers in the FAR
and progressing to
about thirty levels in both atmosphere and ocean.
Quelle: IPCC-AR4-wg1 (2007), Figure 1.4
Geographic resolution characteristic of climate Models
Quelle: IPCC-AR4-wg1 (2007), Figure 1.4
aktueller Stand (2007):
30 levels in both atmosphere and ocean.
Quelle: IPCC-AR4-wg1 (2007), Figure 1.4
Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre
nach Raumdimensionen geordnet
Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :
Erläuterungen zur Tabelle 2.1 (Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre ):
Die Richtung der Dimensionen ist in Klammern spezifiziert:
(lat = latitude,
long = longitude,
z = vertikal);
2.5d = mehrere 2-dimensionale Ozeanbecken, die im südlichen Ozean verbunden sind;
Weitere viel verwendete Abkürzungen:
EBM =
energy
balance model,
AGCM = atmospheric general circulation model,
OGCM =
ocean
general circulation model .
QG = für quasi-geostrophisch, SST = sea surface temperature.
In kursiv sind einige Modellbeispiele genannt (entweder Autoren oder Modellbezeichnung).
EMICS:
Das grau schattierte Gebiet enthält Klimamodelle reduzierter Komplexität
(auch Earth System Models of Intermediate Complexity, EMICs genannt),
mit denen lange Integrationen durchgeführt werden können
(mehrere 10^3 – 10^6 Jahre, oder grosse ensembles).
Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :
Klimamodelle sind gar nicht so einfach zu verstehen und zu beurteilen
(hmm…..- was tun?)
Daher :
1. Hinweis auf ausführliche Vorlesungen im www
und auf gedruckte Publikationen.
2. Virtueller Gastvortrag :
Prof. Broccoli, Rutgers University, New Jersey, USA
1. Ausgewählte Internetquellen
Prof. Stocker, Bern
http://www.climate.unibe.ch/
~stocker/papers/skript0203.pdf
zum Original
Inhalt der Vorlesung von Prof. Stocker
1 Einführung....................
.........................................................................................................1
1.1 Ziel der Vorlesung und weiterführende Literatur ................................................................1
1.2 Das Klimasystem..................................................................................................................3
1.3 Aufgaben und Grenzen der Klimamodellierung ..................................................................6
1.4 Historische Entwicklung ......................................................................................................9
1.5 Einige aktuelle Beispiele zur Klimamodellierung .............................................................13
1.6 Zusammenfassung.................................................................... ...........................17
2 Modellhierarchie und einfache Klimamodelle ..................................................................19
2.1 Hierarchie der physikalischen Klimamodelle ....................................................................19
2.2 Punktmodell der Strahlungsbilanz ....................................................................................27
2.3 Numerische Lösung einer gewöhnlichen Differentialgleichung 1. Ordnung ............. .......30
2.4 Klimasensitivität im Energiebilanzmodell ................................................................... ......34
3 Advektion, Diffusion und Konvektion................................................................................41
3.1 Advektion..........................................................................................................................41
3.2 Diffusion............................................................................................................................42
3.3 Konvektion........................................................................................................................43
3.4 Advektions-Diffusionsgleichung und Kontinuitätsgleichung....................... .....................44
3.5 Numerische Lösung der Advektions-Gleichung ................................................................45
3.6 Weitere Verfahren zur Lösung der Advektions-Gleichung ..................................... ..........53
3.7 Numerische Lösung der Advektions-Diffusions Gleichung ..................................... .........59
3.8 Numerische Diffusion .......................................................................................................59
4 Energietransport im Klimasystem und seine Parametrisierung .....................................61
4.1 Grundlagen........................................................................................................................61
4.2 Wärmetransport in der Atmosphäre ..................................................................................62
4.3 Breitenabhängiges Energiebilanzmodell............................................................................65
4.4 Wärmetransport im Ozean ................................................................................................66
.......................................................
5 Anfangswert- und Randwertprobleme...............................................................................71
5.1 Allgemeine Grundlagen .....................................................................................................71
5.2 Direkte numerische Lösung der Poissongleichung ............................................................72
5.3 Iterative Verfahren .............................................................................................................74
5.4 Successive Overrelaxation (SOR)......................................................................................75
6 Gross-skalige Zirkulation im Ozean...................................................................................77
6.1 Die Bewegungsgleichungen......................................................................................... .....77
6.2 Flachwassergleichungen als Spezialfall ............................................................................80
6.3 Verschiedene Typen von Gittern in Klimamodellen........................................................ ..81
6.4 Spektralmodelle.................................................................................................................85
6.5 Windgetriebene Strömung im Ozean (Stommel Modell) .............................................. ...87
6.6 Potentielle Vorticity: eine wichtige Erhaltungsgrösse .................................................... ..93
7 Gross-skalige Zirkulation in der Atmosphäre ..................................................................97
7.1 Zonale und meridionale Zirkulation .............................................................................. ....97
7.2 Das Lorenz-Saltzman Modell ..........................................................................................102
8 Atmosphäre-Ozean Wechselwirkung...............................................................................109
8.1 Kopplung von physikalischen Modellkomponenten................................................... .....109
8.2 Thermische Randbediungungen.................................................................................. .....110
8.3 Hydrologische Randbedingungen............................................................................... .....114
8.4 Impulsflüsse ............................................................................................................. ........116
8.5 Gemischte Randbedingungen ................................................................................... .......116
8.6 Gekoppelte Modelle................................................................................................... .. ...118
9 Multiple Gleichgewichte im Klimasystem .......................................................................122
9.1 Abrupte Klimawechsel aufgezeichnet in polaren Eisbohrkernen ............................... .....122
9.2 Multiple Gleichgewichte in einem einfachen Atmosphärenmodell............................. ....124
9.3 Multiple Gleichgewichte in einem einfachen Ozeanmodell ....................................... .....125
9.4 Multiple Gleichgewichte in gekoppelten Modellen.................................................... .....127
9.5 Schlussbemerkungen und Ausblick .................................................................................130
10 Übungsaufgaben zur Klimamodellierung........................................................................131
Prof. Claussen, Potsdam
http://www.pik-potsdam.de/
~claussen/lectures/
physikalische_klimatologie/
physklim1.pdf
zum Original
IMPRS, 4 June 2003
1.
Earth System Models
of Intermediate Complexity
Martin Claussen
Potsdam-Institut für Klimafolgenforschung /
Universität Potsdam
• Remarks on the Earth system
• The spectrum of Earth system models
• Examples from CLIMBER-2 and EMIC workshops
• Perspective for Integrative Modelling
Quelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/
Climate modelling with quasi-realistic models experiences in describing climate during the
Holocene and the Eemian, and in designing
scenarios of plausible future climate change.
The construction and utility of quasi-realistic climate models is reviewed. Examples of
reconstructing past climates are presented, in particular for the last millennium and for the
last interglacial, the Eemian (120 ka bp).
In addition, the approach of constructing plausible future climates, conditional upon the
extent the atmosphere is used as a dump for anthropogenic substances, is demonstrated
with examples.
Prof. von Storch, GKSS
Hans von Storch
Institute for Coastal Research,
GKSS Research Center, Geesthacht, Germany
Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;
http://w3g.gkss.de/G/Mitarbeiter/storch/
7.5.2004 Centro de Astrobiología,
Madrid
http://w3g.gkss.de/G/Mitarbeiter/storch/
IfK
Institut für Küstenforschung
2. Virtueller Gastvortrag
zunächst:
Vorbereitung und Einstimmung
Die Atmosphäre über Europa im
diskreten Modell
U. Cubasch
BQuelle:DLR_Schumann200_Klimawandel.ppt
Europa im diskretisierten Modell
U. Cubasch
BQuelle:DLR_Schumann2000_Klimawandel.ppt
McGuffie and Hendersson-Sellers, 1997
BezugsQuelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/
Für die zeit- und ortsabhängigen Zustandsvariablen:
T
= Temperatur
 = Dichte
p = Druck
{u,v,w} = Strömungsgeschwindigkeit (3 Komponenten)
gelten in jeder Zelle
die Grundgleichungen der Strömungs- undThermodynamik.
(Erhaltung von Impuls [NavierStokes],
Masse [Kontinuitätsgleichung],
und Energie,
und Zustandsgleichung
.)
Im Ozean
wird an Stelle der Dichte  meist der Salzgehalt S benutzt, da:  =  (S,T,p) .
In der Atmosphäre kommen noch wg. der Energiebilanz
der Wasserdampfgehalt q und flüssiges Wolkenwasser hinzu.
Quelle: / Storch-Güss-Heimann 99, p.99ff./
Es wird ein
auf der rotierenden Erde (Corioliskraft! )
ortsfestes (Advektionsterm! )
Koordinatensystem verwendet.
Daher treten in den Navier Stokes Gln.(Impulserhaltung) auf:
der Coriolis Parameter f:
f = 2 *  * sin 
mit:  = Winkelgeschwindigkeit der Erddrehung
,  = geographische Breite und länge
der Erdradius : a
Quelle: / Storch-Güss-Heimann 99, p.99ff./
Erinnerung an die Hydrodynamik:
Eulerian and Lagrangian description
BQuelle: Prof. Dick Yue, MIT_ocw 13.021 „Marine Hydrodynamics“, lecture notes „2 Basic Equations“
http:/ocw.mit.edu/OcwWeb/Ocean-Engineering/13-021MarineHydrodynamicsFall2001/CourseHome/index.htm
Erinnerung an die Hydrodynamik:
D /Dt
Behauptung : Es gilt:
BQuelle: Prof. Dick Yue, MIT_ocw 13.021
Beweis :
atmosphere
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
ocean
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
Parameterizations
The terms Fu, Fv, Gq, Gs, GT and Q describe the effect of
“unresolved” processes on state variables u, v, q, ρ and
T, i.e.,
Fu = Fu,Δx(u, v, q, ρ,T)
These functions are called „parameterizations“; they are
not uniquely determined (i.e., different formulations
may serve the same purpose), and the limiting process
is not defined, i.e.,
lim Fu,Δx(u, v, q, ρ,T) does not exist.
x 0
There is nothing like “the differential equations” of
climate.
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
Institut für Küstenforschung
Dynamical processes in the atmosphere
IfK
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
Institut für Küstenforschung
Dynamical processes in a global atmospheric model
IfK
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
Institut für Küstenforschung
Dynamical processes in the ocean
IfK
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
Institut für Küstenforschung
Dynamical processes in a global ocean model
IfK
Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/
Quasi-realistic Models
• Models of aximum
complexity, which
feature as many
processes as is
possible given the
computational
resource.
• Meant as a tool to
simulate in space-time
detail the trajectory
of climate.
• Quasi-realistic models
do not “explain” but
allow for “numerical
experiments”.
Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;
http://w3g.gkss.de/G/Mitarbeiter/storch/
Quasi-realistic models
Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;
http://w3g.gkss.de/G/Mitarbeiter/storch/
2.343 Virtueller Gastvortrag von Prof. Broccoli, USA:
1. Atmospheric General Circulation Modeling
2. Coupled General Circulation Modeling
Prof. Anthony J. Broccoli
Dept. of Environmental Sciences
Rutgers University, New Jersey, USA
Homepage:
http://www.envsci.rutgers.edu/~broccoli/index.html
Atmospheric General
Circulation Modeling
Anthony J. Broccoli
Dept. of Environmental Sciences
Zum Original:
http://climate.envsci.rutgers.edu/climod/BroccoliAtmos_gcm_env544.ppt
Coupled General Circulation
Modeling
Anthony J. Broccoli
Dept. of Environmental Sciences
Zum Original:
http://climate.envsci.rutgers.edu/climod/BroccoliCoupled_gcm_env544.ppt
2.344 Übersicht : Komplexere Modelle
Ist dies Bild schöner als die Urfassung,das folgende Bild?
IPCC2001_TAR1_TS-Box3
Box 3: Climate Models: How are they built and how are they applied?
Comprehensive climate models are based on physical laws represented by mathematical
equations that are solved using a three-dimensional grid over the globe.
For climate simulation, the major components of the climate system must be represented in
submodels (atmosphere, ocean, land surface, cryosphere and biosphere), along with the
processes that go on within and between them.
Most results in this report are derived from the results of models, which include some representation of all these components.
Global climate models in which the atmosphere and ocean components have been coupled
together are also known as Atmosphere-Ocean General Circulation Models (AOGCMs). In
the atmospheric module, for example, equations are solved that describe the large-scale
evolution of momentum, heat and moisture. Similar equations are solved for the ocean.
Currently, the resolution of the atmospheric part of a typical model is about 250 km in the
horizontal and about 1 km in the vertical above the boundary layer.
The resolution of a typical ocean model is about 200 to 400 m in the vertical, with a
horizontal resolution of about 125 to 250 km.
Equations are typically solved for every half hour of a model integration.
Many physical processes, such as those related to clouds or ocean convection, take place on
much smaller spatial scales than the model grid and therefore cannot be modelled and
resolved explicitly. Their average effects are approximately included in a simple way by taking
advantage of physically based relationships with the larger-scale variables. This technique is
known as parametrization.
IPCC2001_TAR1_TS-Box3
2.35
Projektionen und Szenarios
für das 21. Jahrhundert
700
2.351 „Historische Perspektive“
CO2 in 2100
(with business as usual)
The last 160,000
years (from ice
cores) and the next
100 years
600
Double pre-industrial CO2
Lowest possible CO2
stabilisation level by 2100
400
CO2 now
CO2
300
10
200
0
Temperature
difference
from now °C
–10
100
160
120
80
40
Time (thousands of years)
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
Now
CO2 concentration (ppmv)
500
2.352 Emissionsszenarien und die Komplexität der weiteren Entwicklung
•Die weitere Entwicklung der Emissionen
von GHG und SO4- Aerosolen hängen
vom komplexen Zusammenwirken vieler Faktoren ab:
u.a.
Bevölkerung : Wachstum, Altersstruktur, Land-Stadt-Übergang, Wanderung
Ökonomie : Wachstum, Struktur
Technik
: Stand der Technik und
Marktdurchdringung „nachhaltiger“ Technologien
Regierung und Kultur
• IPCC gibt einheitliche Emissionsszenarien vor:
Climate change is a sustainable
development issue
Climate System
•Temperature rise
•Sea level rise
•Precipitation changes
Climate change
impacts
Feedbacks
Environmental
impacts
Enhanced
greenhouse
effect
Atmospheric
Concentrations
•Carbon dioxide
•Methane
•Nitrous oxide
•Aerosols
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 9
Human &
Natural Systems
•Water resources,
agriculture, forestry
•Ecological systems and
biodiversity
•Human health
Anthropogenic
emissions
Non-climate
change
stresses
Socio-Economic
Development Paths
•Main drivers are economic
growth, technology, population,
governance structures, energy
and land use
IPCC gibt einheitliche Emissionsszenarien vor:
SRES = Special Report on Emission Szenarios
published in 2000 AD, 592 Seiten
Summaries: SPM, TS
Chapters:
1: Background and Overview
2: An Overview of the Scenario Literature
3: Scenario Driving Forces
4: An Overview of Scenarios
5: Emission Scenarios
6: Summary Discussions and
Recommendations
Appendices:
.....
IV: Six Modeling Approaches
V: Database Description
VI: Open Process
VII Data tables
Die 4 Leitszenarien der IPCC -Berichte
BQuelle: VGB-Literaturrecherche 2006 „Klimawandel und Energiewqirtschaft“, p.106, Bild 8.6,
UrQuelle: Kasang, HamburgerBildungsserver, 2005, nach IPCC
The composition of the atmosphere is projected to change
causing an increase in temperature and sea level
Stand: TAR 2001
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 10
Stand: TAR 2001
3.353
Main climate changes
• Higher temperatures - especially
on land
• Sea level rise
• Hydrological cycle more intense
• Changes at regional level
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
3.3531 Higher Temperatures
Understanding Near Term CC
Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26.
OriginalBildunterschrift:
Model projections of global mean warming compared to observed warming.
Observed temperature anomalies, as in Figure TS.6,
are shown as annual (black dots) and decadal average values (black line).
Projected trends and their ranges
from the IPCC First (FAR) and Second (SAR) Assessment Reports are shown as
green and magenta solid lines and shaded areas,
and the projected range from the TAR is shown by vertical blue bars.
These projections were adjusted to start at the observed decadal average value in 1990.
Multi-model mean projections from this report
for the SRES B1, A1B and A2 scenarios, as in Figure TS.32, are shown for the period
2000 to 2025 as blue, green and red curves with uncertainty ranges indicated against
the right-hand axis.
The orange curve shows model projections of warming if greenhouse gas and aerosol
concentrations were held constant from the year 2000 – that is, the committed
warming.
Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26 Bildunterschrift:
3.3531a Large Scale projections for the 21.Century
Projected global surface warming at the
end of the 21st century.
Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6
Projections of Future Changes in
Climate
Best estimate for
low scenario (B1)
is 1.8°C (likely
range is 1.1°C to
2.9°C), and for
high scenario
(A1FI) is 4.0°C
(likely range is
2.4°C to 6.4°C).
Broadly
consistent with
span quoted for
SRES in TAR, but
not directly
comparable
Quelle:IPCC-AR4wg1_Vortrag Pachauri
Projections of Surface Temperature
Scenario B1
Scenario A1B
Scenario A2
°C
Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28
Projected warming in 21st century expected to be
greatest
over land and at most high northern latitudes
and
least
over the Southern Ocean and parts of the North Atlantic Ocean
Original Bildunterschrift:
Projected surface temperature changes for the early and late 21st century
relative to the period 1980 to 1999.
The panels show the AOGCM multi-model average projections (°C)
for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios
averaged over the decades 2020 to 2029 and 2090 to 2099 (right).
Some studies present results only for a subset of the SRES scenarios, or for
various model versions. Therefore the difference in the number of
curves, shown in the left-hand panels, is due only to differences in the availability of
results. {Adapted from Figures 10.8 and 10.28}
Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28, Bildunterschrift
Corresponding uncertainties
to the Projected Temperature Changes
Uncertainties as the relative probabilities of estimated global average warming
from several different AOGCM and EMIC studies for the same periods.
Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28 (nun vollständig)
Folgerung:
Near term projections insensitive to choice of scenario
Longer term projections depend on
scenario and climate model sensitivities
Summary: Projections of Future Changes in Climate
For the next two decades a warming of
about 0.2°C per decade is projected for a
range of SRES emission scenarios.
 Even if the concentrations of all
greenhouse gases and aerosols had
been kept constant at year 2000 levels, a
further warming of about 0.1°C per
decade would be expected.
 Earlier IPCC projections of 0.15 to 0.3 oC
per decade can now be compared with
observed values of 0.2 oC

Quelle:IPCC-AR4wg1_Vortrag Pachauri
Land areas warm more than the oceans
with the greatest warming at high latitudes
Stand: TAR 2001
(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)
Multi-model ensemble annual mean change of the temperature for emission scenario A2
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)
3.3532 Sea Level Rise
Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6
Tens of millions of people are projected to be at risk of
being displaced by sea level rise
Assuming 1990s Level of Flood Protection
Stand: TAR 2001
Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts:
A Global Perspective.
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18
3.3533 Hydrological Cycle
Hydrological Cycle more intense
precipitation increases very likely in high latitudes
Decreases likely in most subtropical land regions
Quelle:IPCC-AR4wg1_Vortrag Pachauri
Weitere Aussagen der Modelle
Projections of Future Changes in Climate
There is now higher confidence in projected
patterns of warming and other regional-scale
features, including changes in wind patterns,
precipitation, and some aspects of extremes
and of ice.
PROJECTIONS OF FUTURE CHANGES IN CLIMATE
• Snow cover is projected to contract
• Widespread increases in thaw depth most permafrost
regions
• Sea ice is projected to shrink in both the Arctic and
Antarctic
• In some projections, Arctic late-summer sea ice
disappears almost entirely by the latter part of the 21st
century
PROJECTIONS OF FUTURE CHANGES IN CLIMATE
• Very likely that hot extremes, heat waves, and
heavy precipitation events will continue to
become more frequent
• Likely that future tropical cyclones will become
more intense, with larger peak wind speeds and
more heavy precipitation
• less confidence in decrease of total number
• Extra-tropical storm tracks projected to move
poleward with consequent changes in wind,
precipitation, and temperature patterns
2.36
Was tun ?
Erste Ansätze der
Internationalen Gemeinschaft
UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE:
UNFCC92: Rio de Janeiro 1992
ARTICLE 2: OBJECTIVE
The ultimate objective of this Convention .... is to achieve, .…
stabilization of greenhouse gas concentrations in the atmosphere
at a level that would prevent dangerous anthropogenic interference
with the climate system.
Such a level should be achieved within a
time-frame sufficient :
• to allow ecosystems to adapt naturally
to climate change.
• to ensure that food production is not
threatened, and
• to enable economic development to
proceed in a sustainable manner.
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
Stabilization of the atmospheric concentration of carbon
dioxide will require significant emissions reductions
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 19
IPCC: Climate Change 2001- The Scientific
Basis
Summary for Policymakers (SPM)
Drafted by a team of 59
Approved ‘sentence by sentence’
by WGI plenary (99 Governments and 45
scientists)
14 chapters
881 pages
120 Lead Authors
515 Contributing Authors
4621 References quoted
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
IPCC Website
http://www.ipcc.ch
Ansatzpunkte zur Wende
1. CO2-freie Energiequellen
• Erneuerbare Energien ( RE =Renewable Energies)
Wasserkraft, Wind, Biomasse, Sonne (themisch, Strom)
• Kernenergie , Generation IV ; Kernfusion
• Geothermie (Oberflächennah, Tiefe Geothermie)
2. CO2 Sequester und GeoEngineering
• CCS, Storage: in geologischen Schichten, im Meer
• Eisendüngung zum Algenwachstum, Aufforsten
• Sulfat in die Stratoposhäre
3. Rationelle Energieverwendung
• Gleiche Energiedienstleistung mit geringerem Energieeinsatz
• Höhere Wirkungsgrade bei Kraftwerken, Motoren etc.
4. Verhaltensänderung
• Leben mit weniger Energiedienstleistungen,
aus Knappheit oder Bescheidenheit
• Ernährung: „Weniger Fleisch“
Pflicht für jeden
Immer strebe zum Ganzen,
und kannst Du selber kein Ganzes
Werden,
als dienendes Glied schließ an ein Ganzes Dich an
Spruch von JWG vom bescheidenen aber endlichen
Beitrag eines Wasserträgers
Quelle: J.W. Goethe: Gedichte, Herausgeber ErichTrunz, Verlag C.H. Beck. p.226 ;
Urquelle:JWG: Distichon im Zusammenhang der Xenien entstanden, aber außerhalb des Xenien Zyklus veröffentlicht
Wichtigste benutzte Literatur für 0.2 :
1. IPCC-COP6a_Bonn2001_WatsonSpeech: Redemanuskript + Bilder
2. IPCC2001_TAR1: Climate Change 2001, The Scientific Basis
insbesondere Technical Summary und
die jeweils als Quelle oder „Urquelle“ angegebenen Seiten.
Reste
CO2, temperature, precipitation and sea level in the
21.th century
All IPCC projections show that the atmospheric concentration of CO2 will increase
significantly during the 21th century in the absence of climate change policies;
Climate models project that the Earth will warm 1.4 to 5.8 °C between
1990 and 2100, with most land areas warming more than the global average;
Precipitation will increase globally, with increases and decreases locally,
with an increase in heavy precipitation events over most land areas;
Sea level is projected to increase 8-88
cm between 1990 and 2100;
Models project an increase in extreme weather events,
e.g. heatwaves, heavy precipitation events, floods, droughts, fires, pest outbreaks,
mid-latitude continental summer soil moisture deficits,
and increased tropical cyclone peak wind and precipitation intensities.
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary
Global mean surface temperature is projected to
increase during the 21st century
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 11
Projected surface temperatures for the 21st century
would be unheralded in the last 1000 years
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 12
Land areas warm more than the oceans
with the greatest warming at high latitudes
(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)
Multi-model ensemble annual mean change of the temperature for emission scenario A2
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)
There is significant inertia in the climate system
Scenario: Stabilisation of [CO2] at 550 ppm
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 14
Some areas are projected to become wetter, others drier
(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)
Multi-model ensemble annual mean change of the precipitation for emission scenario A2
UrQuelle: IPCC2001_TAR: Fig.9.11d, p.550 (vereinfacht)
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 15
Projected Changes in Extreme Climate Events and Resulting
Impacts
Projected Changes during the 21st
Century in Extreme Climate Phenomena
and their Likelihooda
Representative Examples of Projected Impactsb
(all high confidence of occurrence in some areasc)
Higher maximum temperatures,
more hot days and heat wavesd over nearly
a
all land areas (Very likely )
•
Higher [Increasing]
•
fewer cold days, frost days and cold wavesd
a
over nearly all land areas (Very likely )
•
1. Simple Extremes
minimum temperatures,
•
•
•
•
•
More intense precipitation events
•
•
(Very likelya, over many areas)
•
•
•
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1
Increased incidence of death and serious illness in older
age groups and urban poor [4.7]
Increased heat stress in livestock and wildlife [4.2 and 4.3]
Shift in tourist destinations [Table TS-2 and 5.7]
Increased risk of damage to a number of crops [4.2]
Increased electric cooling demand and reduced energy
supply reliability [Table TS-4 and 4.5]
Decreased cold-related human morbidity and mortality
[4.7]
Decreased risk of damage to a number of crops, and
increased risk to others [4.2]
Extended range and activity of some pest and disease
vectors [4.2 and 4.3]
Reduced heating energy demand [4.5]
Increased flood, landslide, avalanche, and mudslide
damage [4.5]
Increased soil erosion [5.2.4]
Increased flood runoff could increase recharge of some
floodplain aquifers [4.1]
Increased pressure on government and private flood
insurance systems and disaster relief [Table TS-4 and 4.6]
Projected Changes in Extreme Climate Events and Resulting
Impacts (cont.)
2. Complex Extremes
Increased summer drying
over most mid-latitude continental interiors
and
associated risk of drought
a
(Likely )
Increase in tropical cyclone peak wind
intensities, mean and peak precipitation
a
intensities (Likely , over some areas)e
•
•
•
•
•
•
•
Intensified droughts and floods
associated with El Niño events in many
a
different regions (Likely )
[See also under droughts and intense
precipitation events]
Increased Asian summer monsoon
a
precipitation variability (Likely )
Increased intensity of
mid-latitude storms
(Little agreement between current models)d
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1 continued
•
•
•
•
•
•
Decreased crop yields [4.2]
Increased damage to building foundations caused by
ground shrinkage [Table TS-4]
Decreased water resource quantity and quality [4.1 and
4.5]
Increased risk of forest fire [5.4.2]
Increased risks to human life, risk of infectious disease
epidemics and many other risks[4.7]
Increased coastal erosion and damage to coastal buildings
and infrastructure [4.5 and 7.2.4]
Increased damage to coastal ecosystems such as coral reefs
and mangroves [4.4]
Decreased agricultural and rangeland productivity in
drought- and flood-prone regions [4.3]
Decreased hydro-power potential in drought-prone regions
[5.1.1 and Figure TS-7]
Increase in flood and drought magnitude and damages in
temperate and tropical Asia [5.2.4]
Increased risks to human life and health [4.7]
Increased property and infrastructure losses [Table TS-4]
Increased damage to coastal ecosystems [4.4]
Crop yields are projected to decrease throughout the tropics
and sub-tropics, but increase at high latitudes
2020‘s
2050‘s
2080‘s
Percentage change in
average crop yields for the
climate change scenario.
Effects of CO2 are taken
into account. Crops
modeled are: wheat,
maize and rice.
Jackson Institute, University
College London / Goddard
Institute for Space Studies /
International Institute for Applied
97/1091 16
Systems Analysis
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 17
Tens of millions of people are projected to be at risk of
being displaced by sea level rise
Assuming 1990s Level of Flood Protection
Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts:
A Global Perspective.
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18
Biological systems have already been affected
Biological systems have already been affected in many parts of the world by changes
in climate, particularly increases in regional temperature

Bird migration patterns are changing and birds are laying their eggs
earlier;
 the growing season in the Northern hemisphere has lengthened
by about 1-4 days per decade
during the last 40 years; and
 there has been a pole-ward and upward migration of plants, insects and
animals.
Projected changes in climate will have both beneficial and adverse effects on water
resources, agriculture, natural ecosystems and human health, but the larger the changes
in climate the more the adverse effects dominate
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary
Projected changes in climate will have
both beneficial and adverse effects on
• water resources,
• agriculture,
•natural ecosystems
• human health,
but:
• the larger the changes in climate - the more the adverse effects dominate
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary
Early Results for 2007-Report IPCC-AR4
UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5
BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf
Early Results for 2007-Report IPCC-AR4
Model calculations with 3 emissions scenarios, representing
550, 700 and 800 ppm CO2
by 2100 AD , give:
•
Global temperatures are likely to rise by 2.5 – 4 °C by 2100,
•
Arctic will become ice-free during summer by 2090 AD .
(even in the 550 ppmCO2 case)
•
The global sea level will rise by up to 40 cm ,
composed of up to 30 cm
by an additional 10 cm
as water warms and expands, and
as part of Greenland’s ice sheet
melts.
•
weakening of the Atlantic ocean circulation. (not a shut down !)
•
more rain and snow at high latitudes and in the tropics, and
•
less rainfall in Mediterranean and subtropical regions.
•
extreme precipitation and drought increase worldwide.
UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5
BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf
Early Results for 2007-Report IPCC-AR4
Originaltext:
Global temperatures are likely to rise by 2.5–4 C by 2100, according to the latest calculations by
scientists at the Max Planck Institute for Meteorology in Hamburg, Germany.
The institute is one of 15 asked by the Intergovernmental Panel on Climate Change to run
extended climate simulations for its fourth assessment report. The
researchers ran six parallel experiments, requiring 400,000 computing hours, using their
atmospheric general circulation model ECHAM5.
They looked at three emissions scenarios, representing carbon dioxide concentrations of 550, 700
and 800 parts per million (p.p.m.) by 2100 (see graph). Even under the most optimistic
assumptions, the model suggests that the Arctic will become ice-free during summer by 2090, says
Erich Roeckner, who heads the group. The global sea level will rise by up to 30 centimetres as
water warms and expands, and by an additional 10 centimetres as part of Greenland’s ice sheet
melts. The scientists also expect a weakening — but not a shut-down — of the Atlantic ocean
circulation. There will be more rain and snow at high latitudes and in the tropics, and less rainfall in
Mediterranean and subtropical regions.
Extreme precipitation and extreme drought are likely to increase worldwide. Q.S.
(Q.S.Quirin Schiermeier)
UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5
BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf