Transcript Eğitim

ME 302 DYNAMICS OF
MACHINERY
Dynamic Force Analysis IV
Dr. Sadettin KAPUCU
© 2007 Sadettin Kapucu
1
Preliminary

Coordinate Transformation
– Reference coordinate frame
OXYZ
– Body-attached frame O’uvw
z
P
Point represented in OXYZ:
Pxyz  [ px , py , pz ]

Pxyz  px i x  p y jy  pz k z
T
Point represented in O’uvw:

Puvw  pu i u  pv jv  pwk w
Two frames coincide ==>
y
w
v
x
O, O’
u
pu  px pv  py pw  pz
Gaziantep University
2
Preliminary
Properties: Dot Product
x
3
Let x and y be arbitrary vectors in R and  be
the angle from x to y , then

x  y  x y cos
y
Properties of orthonormal coordinate frame

Mutually perpendicular
 
i  j 0
 
i k  0
 
k j 0
Gaziantep University

Unit vectors

| i | 1

| j | 1

| k | 1
3
Preliminary

Coordinate Transformation
z
– Rotation only
P

Pxyz  px i x  p y jy  pz k z

Puvw  pu i u  pv jv  pwk w
y
w
v
Pxyz  RPuvw
u
x
How to relate the coordinate in these two frames?
Gaziantep University
4
Preliminary
 Basic
–
Rotation
px , p y , and pz
z
pz
represent the w
projections of P onto OX, OY,
py
OZ axes, respectively
– Since
P  pu i u  pv jv  pwk w
P
y
v
u
x
px
px  i x  P  i x  i u pu  i x  jv pv  i x  k w pw
py  jy  P  jy  i u pu  jy  jv pv  jy  k w pw
pz  k z  P  k z  i u pu  k z  jv pv  k z  k w pw
Gaziantep University
5
Preliminary
 Basic
Rotation Matrix
 px   i x  i u
 p    j i
 y  y u
 p z  k z  i u
i x  jv
j y  jv
k z  jv
i x  k w   pu 



j y  k w   pv 
k z  k w   pw 
– Rotation about x-axis with 
1 0
Rot( x , )  0 C
0 S
0 
 S 
C 
Gaziantep University
z
w
P
v

u
x
y
6
Preliminary

Is it True?
– Rotation about x axis with
0
 p x  1
 p   0 cos
 y 
 p z  0 sin 

  pu 



 sin    pv 
cos   pw 
0
z
w
P
p x  pu

p y  pv cos  pw sin 
p z  pv sin   pw cos
Gaziantep University
v
y
u
x
7
Basic Rotation Matrices
– Rotation about x-axis with 
1 0
Rot( x , )  0 C
0 S
– Rotation about y-axis with 
 C
Rot( y , )   0
 S
– Rotation about z-axis with
Pxyz  RPuvw
Gaziantep University
0 
 S 
C 
S 
1 0 
0 C 
0

C
Rot( z ,  )   S
 0
 S
0
0
1
C
0
8
Preliminary

Basic Rotation Matrix
 i x  i u i x  jv i x  k w 
Pxyz  RPuvw
R   jy  i u jy  jv jy  k w 
k z  i u k z  jv k z  k w 
– Obtain the coordinate of Puvw from the coordinate of Pxyz
Dot products are commutative!
 pu   i u  i x
 p    j i
 v  v x
 pw  k w  i x
i u  jy
jv  j y
k w  jy
i u  k z   px 

jv  k z   p y 
k w  k z   p z 
QR  RT R  R1R  I3
Gaziantep University
Puvw  QPxyz
Q  R1  RT
<== 3X3 identity matrix
9
Example 2

A point auvw  (4,3,2) is attached to a rotating frame, the
frame rotates 60 degree about the OZ axis of the
reference frame. Find the coordinates of the point
relative to the reference frame after the rotation.
a xyz  Rot( z ,60)auvw
 0.5  0.866 0 4  0.598
 0.866
0.5
0 3   4.964 
 0
0
1 2  2 
Gaziantep University
10
Example 3

A point axyz  (4,3,2) is the coordinate w.r.t. the
reference coordinate system, find the
corresponding point auvw w.r.t. the rotated OU-VW coordinate system if it has been rotated 60
degree about OZ axis.
auvw  Rot( z ,60)T a xyz
0.866 0 4  4.598 
 0.5
  0.866 0.5 0 3   1.964
 0
0
1 2  2 
Gaziantep University
11
Coordinate Transformations
• position vector of P
in {B} is transformed
to position vector of P
in {A}
• description of {B} as
seen from an observer
in {A}
Rotation of {B} with respect to {A}
Translation of the origin of {B} with respect to origin of {A}
Gaziantep University
12
Coordinate Transformations

Two Special Cases
A P A
B P A o'
r  RB r  r
1. Translation only
– Axes of {B} and {A} are
parallel
A
RB  1
2. Rotation only
– Origins of {B} and {A}
are coincident
r 0
A o'
Gaziantep University
13
Homogeneous Representation
• Coordinate transformation from {B} to {A}
A P A
r  RB B r P  Ar o'
A
A o'

 r 
RB
r  B r P 




1  1 
 1   013
• Homogeneous transformation matrix
A P
 RB
TB  
 013
A
A
r   R33

1   0
A o'
Gaziantep University
P31 

1 
Scaling
Rotation
matrix
Position
vector
14
Homogeneous Transformation

Special cases
1. Translation
 I 33
A
TB  
013
r 

1 
A o'
2. Rotation
A

RB
A
TB  
 013
031 

1 
Gaziantep University
15
Example 5

Translation along Z-axis with h:
1
0
Trans( z , h)  
0

0
0
1
0
0
0
0
1
0
 x  1
 y  0
 
 z  0
  
 1  0
0
0
h

1
0
1
0
0
0
0
1
0
0  pu   pu 
0  pv   pv 

h   pw   pw  h 
  

1  1   1 
z
z
P
P
y
w
v
v
x
O, O’
y
w
h
u
Gaziantep University
O, O’
u
x
16
Example 6

Rotation about the X-axis by
1 0
0 C
Rot( x, )  
0 S

0 0
0
 S
C
0
0
0
0

1
 x  1 0
 y  0 C
 
 z  0 S
  
 1  0 0
w
0
 S
C
0
0  pu 
0  pv 
0  p w 
 
1  1 
z
P
u
Gaziantep
x University
v
y
17
Homogeneous Transformation
Composite Homogeneous Transformation
Matrix
 Rules:

– Transformation (rotation/translation) w.r.t
(X,Y,Z) (OLD FRAME), using premultiplication
– Transformation (rotation/translation) w.r.t
(U,V,W) (NEW FRAME), using postmultiplication
Gaziantep University
18
Example 7

Find the homogeneous transformation matrix (T)
for the following operation:
Rotation about OX axis
T ranslation of a alongOX axis
T ranslation of d alongOZ axis
Rotationof  about OZ axis
Answer :
T  Tz , Tz ,d Tx,aTx, I 44
C  S 0 0 1 0 0
 S C 0 0 0 1 0


 0
0
1 0  0 0 1
 Gaziantep University

0
0
0
1

 0 0 0
0  1
0  0
d  0

1  0
0
1
0
0
0
0
1
0
a  1 0
0  0 C
0  0 S

1  0 0
0
 S
C
0
0
0
0

119

Homogeneous Representation

A frame in space (Geometric
Interpretation)
z
 R33 P31 
F 

1 
 0
 nx
n
F  y
 nz

0
sx
sy
sz
0
ax
ay
az
0
P( px , py , pz )
a
s
n
px 
p y 
pz 

1
y
x
Principal axis n w.r.t. the reference coordinate system
Gaziantep University
20
Homogeneous Transformation

Translation
a
s
1
0
Fnew  
0

0
 nx
n
 y
 nz

0
0 0 d x   nx s x
1 0 d y  n y s y


0 1 d z  nz s z
 
0 0 1 0 0
sx ax px  d x 
s y a y p y  d y 
sz az pz  d z 

0 0
1 
ax
ay
az
0
px 
p y 
pz 

1
z
a
n
s
n
y
Fnew  Trans(d x , d y , d z )  Fold
Gaziantep University
21