Review of Probability and Statistics
Download
Report
Transcript Review of Probability and Statistics
Optimization
unconstrained and constrained
Calculus part II
Setting-Up Optimization Problems
•
Define the agent’s goal: objective function and
identify the agent’s choice (control) variables
•
Identify restrictions (if any) on the agent’s choices
(constraints). If no constraints exist, then we have
unconstrained minimization or maximization
problems.
If constraints exist, what type?
Equality Constraints (Lagrangian)
Inequality Constraints (Linear Programming)
Mathematically,
Optimize y = f(x1, x2, . . . ,xn)
subject to (s.t.)
gj (x1, x2, . . . ,xn) ≤ bj
or
= bj
j = 1, 2, . . ., m.
or
≥ bj
y = f(x1, x2, . . . ,xn) → objective function
x1, x2, . . . ,xn → set of decision variables (n)
optimize → either maximize or minimize
gi(x1, x2, . . . ,xn) → constraints (m)
Constraints refer to
•
•
•
•
restrictions on resources
legal constraints
environmental constraints
behavioral constraints
Review of Derivatives
•
dy
f ' ( x)
y=f(x): First-order condition:
dx
2
d y
Second-order condition: dx2 f ' ' ( x)
Constant function:
y f ( x) a
f ' ( x) 0
•
•
• Power function:
• Sum of functions:
y f ( x) g ( x)
f ' ( x) baxb 1
dy
f ' ( x) g ' ( x)
dx
dy
f ' ( x) g ( x) f ( x) g ' ( x)
y f ( x) g ( x )
dx
• Product rule:
• Quotient rule:
• Chain rule:
y f ( x) ax b
f ( x)
y
g ( x)
y f ( g ( x))
dy f ' ( x) g ( x) f ( x) g ' ( x)
dx
g ( x)2
dy
f ' ( g ( x)) g ' ( x)
dx
Unconstrainted Univariate
Maximization Problems: max f(x)
• Solution:
• Derive First Order Condition (FOC): f’(x)=0
• Check Second Order Condition (SOC): f’’(x)<0
• Local vs. global: If more than one point satisfy both
FOC and SOC, evaluate the objective function at
each point to identify the maximum.
Example
PROFIT = -40 + 140Q – 10Q2
Find Q that maximizes profit
Example
PROFIT = -40 + 140Q – 10Q2
Find Q that maximizes profit
dPROFIT
140 – 20Q = set 0
dQ
Q=7
d 2 PROFIT
- 20 < 0
dQ2
max profit occurs at Q = 7
max profit = -40 + 140(7) – 10(7)2
max profit = $450
Minimization Problems: Min
f(x)
• Solution:
• Derive First Order Condition (FOC): f’(x)=0
• Check Second Order Condition (SOC): f’’(x)>0
• Local vs. global: If more than one point satisfy both
FOC and SOC, evaluate the objective function at
each point to identify the minimum.
Example
COST = 15 - .04Q + .00008Q2
Find Q that minimizes cost
Example
COST = 15 - .04Q + .00008Q2
Find Q that minimizes cost
dCOST -.04 + .00016Q = set 0
dQ
Q = 250
d 2 COST
.00016 > 0
2
dQ
Minimize cost at Q = 250
min cost = $10
Unconstrained Multivariate
Optimization
•
Max
•
FOC:
•
SOC:
2 y
x 2
y g ( x, z )
y
x
y
g x ( x, z )
( x, z ) z 2 ( x, z )
g z ( x, z )
2 y
g zz ( x, z ) 0
z 2
2 y
g xx ( x, z ) 0
2
x
2 y
z
2 y
xz
( x, z )
2 y
zx
( x, z ) 0
Example
Find Q1 and Q2 that maximize Profit
PROFIT 60 140Q1 100Q2 10Q12 8Q22 6Q1Q2
Example
PROFIT is a function of the output of two products
(e.g.heating oil and gasoline)
Q1
Q2
PROFIT 60 140Q1 100Q2 10Q12 8Q22 6Q1Q2
dPROFIT
140 20Q1 6Q2 set 0
dQ1
dPROFIT
100 16Q2 6Q1 set 0
dQ2
20Q1 6Q2 140
6Q1 16Q2 100
Solve Simultaneously Q1 = 5.77 units
Q2 = 4.08 units
Second-Order Conditions
2
d PROFIT
20
2
dQ1
d 2 PROFIT
6
dQ1 dQ2
d 2 PROFIT
16
2
dQ2
2
d 2 PROFIT d 2 PROFIT d 2 PROFIT
0
2
2
dQ1
dQ2
dQ1 dQ2
(-20)(-16) – (-6)2 > 0
320 – 36 > 0
we have maximized profit.
Constrained Optimization
•
•
•
•
Solution: Lagrangian Multiplier Method
Maximize y = f(x1, x2, x3, …, xn)
s.t. g(x1, x2, x3, …, xn) = b
Solution:
• Set up Lagrangian:
L( x1 , x2 ,...,xn , ) f ( x1 , x2 ,...,xn ) g ( x1 , x2 ,...,xn ) b.
• FOC:
Lx1 ( x1, x 2,..., xn, ) 0
...
Lxn ( x1, x 2,..., xn, ) 0
L ( x1, x 2,..., xn, ) g ( x1, x 2,..., xn) b 0
Lagrangian Multiplier
• Interpretation of Lagrangian Multiplier λ: the
shadow value of the constrained resource.
o If the constrained resource increases by 1 unit, the
objective function will change by λ units.
Example
2
2
Maximize Profit = 60 140Q1 100Q2 10Q1 8Q2 6Q1Q2
subject to (s.t.) 20Q1 + 40Q2 = 200
Could solve by direct substitution
Note that 20Q1 = 200 – 40Q2 → Q1 = 10 – 2Q2
Maximize Profit =
60 140(10 2Q2 ) 100Q2 10(10 2Q2) 2 8Q22 6(10 Q2 )Q2
Q2 2.22 units
Q1 5.56 units
Lagrangian Multiplier Method
Formulat eLagrangianFunct ion
L PROFIT 60 140Q1 100Q2 10Q12 8Q22 6Q1Q2
(20Q1 40Q2 200)
MaximizingL profit Maximizestheprofitfunctionas long as 20Q1 40Q2 200.
Decision variables are Q1 , Q2 , .
dL profit
dQ1
dL profit
dQ2
dL profit
d
140 20Q1 6Q2 20 set 0
100 16Q2 6Q1 40 set 0
(20Q 40Q2 200) set 0
T herefore,280 40Q1 12Q2 100 6Q1 16Q2 .
or
34Q1 4Q2 180
also
20Q1 40Q2 200
Q1 5.56 units
Q2 2.22 units
Same answer as before
When Q1 5.56 units and Q2 2.22 units
.774
measures thechangein thevalue of theobjectivefunction
resultingfrom a one unit changein thevalue of theconstraint.