Proposal for research at the Sunderland Pharmacy School

Download Report

Transcript Proposal for research at the Sunderland Pharmacy School

Anti-Cancer drugs Telomeres and Cell Senescence
•
Chromosomes within animal and
human cells have a group of guanine
groups (telomeres) at their 3’termini.
•
These form a 4-membered structure
or G-tetrads. Upon cell division a
number of these guanine groups are
lost and typically not replaced.
Eventually the number of Guanine
groups is reduced to the point that
other cell-defence mechanisms
destroy the cell (apoptosis) to reduce
the risk of mutation of the gene
sequence which may lead to disease,
including certain cancers.
C arto on representation of
G uanine rich
H oog steen base paired
tetrad s
U nzippin g of chrom osonal D N A
Im perfect D N A replication
m echan ism s
results in loss of telo m ere
G -tetrads sh orten in g telom eres
in dau ghter D N A stran d
G-Quadruplex Ligands
•
•
•
The natural shortening of telomeres in eukaryotic cells has been implicated in
senescence and subsequent apoptosis.
The competing action of telomerase is restricted to certain tumor and early
stem cells.
The genetic coding for the telomerase enzyme and the potential inhibition of
telomerase expression are considered important areas of research, not merely
from the perspective of understanding the genetic dependency but, via a new
fundamental maxim, will provide insight into prospective treatments.
H
N
N
N
H
N
O
H
N
N
N
H
N
N
N
N
H
NH
H
O
N
N
O
H
HN
N
H
O
N
H
H
N
N
N
Telomerase and telomere extension
•
•
•
Tumor cells are the exception to this rule,
in that an enzyme called Telomerase is
produced and goes about replacing the Gquadruplex structure on the ends of the
chromosomes making them theoretically
immortal.
A way of stopping the replenishment of the
guanine groups would be to formulate a
chemical that would adhere to the Gquadruplex in such a way as to prevent this
telomeric elongation.
This would cause cancer cells to lose their
telomeres as a normal healthy cell does.
The fact that cancer cells replicate faster
than normal healthy cells (whose
telomeres are longer anyway) would serve
to selectively diminish the length of
telomeres on chromosones in cancerous
cells and result in them dying (via
apoptosis) faster than healthy cells.
Im perfect D N A rep licatio n m ech anism s
resu lts in loss o f telo m ere G -tetrads sh o rten in g
telo m eres in d au g h ter D N A stran d
T elo m erase pro tein co m p risin g R N A an d p rim er
Current thinking
•
•
•
•
Antisense oligonucleotides
Telomerase antagonists
Oligopeptide vaccines
G-Quadruplex Ligands
– Braco19 (Antisoma)
– Xenograft tumour models clinical trials
Biomimetics
N
N
HN
G -q u ad ru p lex m o d el
N
O
N
N
One of the strategies would be to design
a molecule capable of mimicking the Gquadruplex structure.
•
High throughput screening using for
example DOSY NMR would allow the
formation of both static and dynamic
combinatorial libraries of small organic
species ultimately capable of stabilising
the biological equivalent.
•
Significant research could be carried out
in the mode of drug action and the
actions of the potential inhibitor within
living systems.
•
The investigation of potential Gquadruplex liganding agents would also
involve consideration of physicochemical
aspects of both the ligand library and
the biological systems affected, inculding
thermodynamics and chemical kinetics.
N
N
O
N
NH
N
N
N
N
N
H
L in k er G ro u p
N
O
O
N
N
H
N
N
•
O
O
N
N
N
O
HN
C alix fo u n d atio n
OR
OR
RO
RO
O
Research Calix[4]arenes in
host-guest chemistry
O
O
O
O
O
HN
NH
HN
NH
O
HN
I
I
I
I
OB u B u O
OB u
BuO
HN
O
E t 3 N , 1 5 % P d (O A c ) 2 , D P P P ,
o
D M F , 1 0 0 C , 2 7 5h rs
O
NH
HN
NH
O
HN
OR
OR
O
RO
RO
On the scope and limitations of the Heck reaction of upper rim tetraiodocalix[4]arenes
J. Chem. Soc. Perkin Trans. 1, 2001, 24, 3393-3398, Kuhnert N and Le Gresley A
Capusle formation and binding to Pesticide
8.1 Å
N
S
S
S
S
N
13.1 Å
fungicide tetramethylthiuram-disulfide
Further corroborated by the ESI-MS showing a signal at m/z 2898
Synthesis and capsule formation of upper rim substituted tetra acrylamido
calix[4]arenes Organic and Biomolecular Chemistry, 2005, 11, 21752182 N. Kuhnert and A. Le Gresley
Dynamic combinatorial libraries using
calix[4]arenes
OMe
OMe
O
O
O
O
N
N
O
O
O
O
O
N
N
se le ctio n o f a m in e s
O
O
N
N
N
N
O
O
O
O
O
O
OR
O
O
O
O
O
O
O
O
O
O
O
HN
OR
OR
NH
H
H
RO
RO
OH
S
OR
OR
B iotin
RO
RO
OR
OR
RO
RO
O
The synthesis of static and dynamic combinatorial libraries using deep
cavity tetra-formyl calix[4]arenes N. Kuhnert and A. Le-Gresley,
Tetrahedron Lett. 2005,46, 2059-2062.
O
Heck Methodology
R'O O
O OR'
I
I
R'O
I
I
Et3N/ 10%
Pd(OAc)2/ DPPP
OR
OR
RO
RO
OR
DMF 100oC 24-150hrs
O
RO
RO
OR
R'
1
R = n-Bu
R' =
O
3
2
4
O
5
O
6
7
O
R'O
O
Reversible Reactions
O
O
O
O O
O O
N R'
N R'
R'R' N
N
O
O O
O O
O O
O O
MS 4A
O O
O O
R'NH2
OR RO
OR RO
OR RO
OR RO
8-22
5
R' =
OH
NH
OCH3
a
b
c
d
e
f
O
H3C (CH2)7
h
(Et3O)Si
O
j
k
H
N
N
HN
O
i
g
N
N
N
l
O
C O
O
O
C
O
m
n
o
Kuhnert, N and Le-Gresley, A. Synthesis of upper rim calix[4]arene carcerands.
Tetrahedron Letters, 98, 1274-1276. 2008
Combinatorial Library
HN
MeO
O
HN
23
NH
N
O
O
Barbituric Acid
CHO
O
5
N
OHC
OHC
5e
5cgg
CHON
OHC
O O
O
O O
O O
and
O
O O
O
O O
O O
O
24
H
H
OR RO
OR RO
OR RO
OR RO
NH
HN
O
S
Biotin
5ae
5c
OH
Imine
Molecular
Formula
Mass Peak (m/z)
Intensity
(relative %)
Guest
5c
C91H87O15N
1434
35
None
5ae
C101H96O15N3
1590
15
-
5a
C91H87O16N
1450
10
-
5e
C94H90O15N2
1487
5
-
5e
C84H90O15N2
1487
39
23
5cgg
C99H105O13N3
1540
25
24
Le Gresley, A The design and synthesis of deep cavity calix[4]arenes in the development
of static and dynamic macrocyclic libraries. European Journal of Organic Chemistry, in
press. 2009
Anthracene Diacrylamides
NR2
O
NR2
O
NR2
O
X
NR2
+
O
Ligand
X
X
X=Cl
X=Br
X=CF3SO3
+
DMF Pd(OAc)2 Et3N
a. R= Me
b. R= H
c. (CH2CH2)2O
1R=H
3 R = Me
2R=H
4 R = Me
5R=
6R=
O
O
HETCOR & Activity
C5
C2
C1
O
H2 N
C1
C2
C3
C4
C5
C6
O
H2 N
2
Manuscript in preparation
C3
C4
C6
G-Quadruplex Formation
Increase in G-quadruplex formation with
time
•TTGGGGT forms parallel strand
G – quadruplex
•Potassium ion stable
•Presence of anthracene
acrylamide increases Gquadruplex component
•DOSY studies underway
Zhou, Q.; Lin, L.; Xiang, J.; Sun, H.; Tang, Y.; Fast screening and structural
elucidation of G-quadruplex ligands from a mixture via G-quadruplex recognition and
NMR methods. Biochimie, 2008, 1-5.
Acknowledgements
•
•
•
•
•
Prof Nikolai Kuhnert, Jacobs Bremen
Dr Jean-Marie Peron, Kingston
Judith Peters, Surrey
RSC
Invitrogen
Compelling
• It has been approximately 15 years since telomerase
was described as an almost universal marker for
human cancer.
• Shortened telomeres undergo replicative senescence
• TRAP Assay inappropriate for G-Quadruplex ligand
activity measurement Paper – De Clan et al. PNAS,
2008
• Grant applications currently pending,
– Cancer Research UK
– Royal Society
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
References
De Cian, A.; Cristofari, G.; Reichenbach, P.; De Lemos, E.; Monchaud, D.; Teulade-Fichou, M.; Shin-ya, K.; Lacroix, L.; Lingner, J.; Mergny, JL.; Proc.
Nat. Acad. Sci. USA. 2007, 104, 44, 17347–173521
Reed, J.; Gunaratnam, M.; Beltran, M.; Reszka, AP.; Vilar, R.; Neidle, S.; Analytical Biochemistry, 2008, 380, 1, 99-105.
Wu, Y. L.; Dudognon, C.; Nguyen, E.; Hillion, J.; Pendino, F.; Tarkanyi, I.; Aradi, J.; Lanotte, M.; Tong, J. H.; Chen, G. Q.; Segal-Bendirdjian, E.; Journal
of Cell Science, 2006, 119, 2797-2806.
Canela, A.; Vera, E.; Klatt, P.; Blasco, M. A.; Proc. Nat. Acad. Sci. USA. 2007, 104, 5300-5305.
Cristofari, G.; Lingner, J.; EMBO Journal. 2006, 25, 565-574.
Tera, M.; Ishizuka, H.; Suganuma, M.; Shin-Ya, K.; Nagasawa, K.; Angewandte Chemie-Int. Ed. 2008, 47, 30, 5557-5560
Burger, A. M.; Dai, F.P.; Schultes, C.M.; Reszka, A.P.; Moore, M.J.; Double, J.A.; Neidle, S.; Cancer Research, 2005, 65, 1489-1496.
Taetz, S.; Baldes, C.; Murdter, T.E.; Kleideiter, E.; Piotrowska, K.;Bock, U.; Haltner-Ukomadu, E.; Mueller, J.; Huwer, H.; Schaefer, U.F.; Klotz, U.;
Lehr, C.M.; Pharmaceutical Research. 2006, 23, 1031-1037
a) Redman, J.; Granadino-Roldán, J.; Schouten, J.; Ladame, S.; Reszka, A.; Neidle, S.; Balashubramamnian, S.; Organic and Biomolecular Chemistry,
2009, 7, 76-84.
b) Kuhnert, N.; Le-Gresley, A.; Organic and Biomolecular Chemistry, 2005, 3, 11, 2175-2182.
Lehn, J-M.;Chemistry. A European Journal, 1999, 5, 2455-2463.
Huc, C. Lehn, J-M. Proc. Nat. Acad. Sci. USA. 1997, 94, 2106-2110.
a) Bugaut, A.; Jantos, K.; Wietor, J.L.; Rodriguez, R.; Sanders, J.K.M; Balashubramamnian, S.; Angew. Chem. Int. Ed. 2008, 47, 2677-2680.
b) Kuhnert, N.; Le-Gresley, A.; Tetrahedron Letters. 2008, 49, 7, 1274-1276.
Wunz, T.; Dorr, R.; Alberts, D.; Tunget, C.; Einspahr, J.; Milton, S.; Remers, W.; Journal of Medicinal Chemistry, 1987, 30, 8, 1313-1321.
Shi, B and Greaney, M.; Chemical Communications, 2005, 886-888.
Naasani, I.; Oh-hashi, F.; Oh-hara, T.; Feng, W. Y.; Johnston, J.; Chan, K.; and Tsuruo, T.; Cancer research. 2003, 69, 824-830.
(a) Whitney, A.; Ladame, S.; Balasubramanian, S.; Angew. Chem. Intl. Ed. 2004, 43, 1143-1146.
(b) Gomez, D.; Mergny, J-L.; Riou, J-F.; Cancer Res. 2002, 62, 3365-3368.
(a) Mazzitelli, C. L.; Wang, J.; Smith, S. I.; Brodbelt, J.; Journal of the American Society for Mass Spectrometry. 2007, 18, 1760-1773.
(b) Zhou, J. A.; Yuan, G.; Chemistry-A European Journal. 2007, 13, 17, 5018-5023.
De-Ming, K.; Jing, W.; Yong-E, M.; Shen, H.; Analyst. 2008, 133, 9, 1158-1160
(a) Nagesh, N.; Krishnaiah, A.; Dhople, V.M.; Sundaram, C.; Jagannadham, M.; Nucleosides, Nucleotides & Nucleic Acids. 2007, 26, 3, 303-315.
(b) Amato, J.; Oliviero, G.; Borbone, N.; D'Errico, S.; Piccialli, G.; Mailliet, P.; Rosu, F.; De Pauw, E.; Gabelica, V.; Nucleic Acids Symp Ser (Oxf). 2008,
52, 165-166
Neidle, S.; Balasubramanian, S.; Quadruplex Nucleic Acid, RSC Publishing,
Cambridge, 2006, 301.
Marathias, V.M.; Bolton, P.H.; Nucleic Acids Res. 2000, 28, 1969-1977.