Transcript Document

Recent advances from the
STAR Experiment
Highlights from
Inclusive hadron spectra &
Azimuthal correlations
X Mexican School of
Particles and Fields
Playa del Cármen, México
November 2, 2002
Manuel Calderón de la Barca
Outline



Heavy Ion Physics and QCD
STAR experiment at RHIC
Measurement highlights of interest to High Energy




Case I : Inclusive charged hadron spectra
Case II: Azimuthal anisotropy
Case III: Two-particle correlations
Conclusions
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Heavy Ions: How does nuclear matter look at high temperature?
e ~ 1-3 GeV/fm3
X MSPF 2/Nov/2002
High Density QCD Matter in Laboratory
Determine its properties
QCD Prediction: Phase Transitions
Deconfinement to Q-G Plasma
Chiral symmetry restoration
Relevance to other research areas?
Quark-hadron phase transition in
early Universe
Cores of dense stars
High density QCD
Manuel Calderón de la Barca
The Relativistic Heavy Ion Collider
BRAHMS
PHOBOS
RHIC
Two
Superconducting Rings
PHENIX
STAR
Ions: A = 1 ~ 200, pp, pA, AA, AB
Design Performance
Au + Au
p+p
Max snn
200 GeV
500 GeV
L [cm-2 s -1 ]
2 x 1026
1.4 x 1031
Interaction rates
X MSPF 2/Nov/2002
3 s -1
1.4
x
10
Manuel Calderón de la Barca
6 x 105 s -1
The STAR Experiment
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Detector components in STAR
1st year detectors (2000)
2nd year detectors
Magnet
3rd year detectors
Time
Projection
Chamber
Coils
Silicon Silicon
Vertex Strip
Tracker Detector
Forward Time
Projection
Chambers
Zero Degree
Calorimeter
Vertex
Position
Detectors
TPC Endcap &
MWPC
Photon
Multiplicity Detector
Endcap
Calorimeter
Barrel EM
Calorimeter
Central
Trigger Barrel
+ TOF patch
RICH
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Focus on high pt




We know very little about early time
Au+Au collisions to study strongly interacting
matter under extreme conditions
Large momentum transfers  early time scales
Use high pt jet phenomena as probe of medium


Hard scattering has been done… but not in hot medium
Measurement of fragmentation products  insight
into gluon density1
X MSPF 2/Nov/2002
[1] R. Baier, D. Schiff, and B. G. Zakharov, Annu. Rev Part.
Sci. 50, 37 (2000).
Manuel Calderón de la Barca
Centrality and Participants in HI
Npart (Wounded Nucleons) ~ soft
production
spectators
Nbin ~ hard processes
Preliminary sNN = 200 GeV
peripheral (grazing shot)
participants
Uncorrected
Centrality classes based on
mid-rapidity multiplicity
X MSPF 2/Nov/2002
central (head-on) collision
Manuel Calderón de la Barca
Case I : Leading hadron suppression
Wang and Gyulassy: DE  softening of fragmentation 
suppression of leading hadron yield
Ivan Vitev, QM02
d 2 N AA / dpT d
RAA ( pT ) 
TAAd 2 NN / dpT d
-X MSPF 2/Nov/2002
Manuel Calderón de la Barca
High pT hadrons in Au+Au
STAR
Preliminary
(nucl-ex/0206011, PRL in press)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Inclusive charged hadron suppression
130 GeV normalized to NN
centrality dependence
130 and 200 GeV,
Central/peripheral
Preliminary
Clear evidence for high pT hadron suppression in central collisions
significant nuclear interactions to very high pT
Now seen by all 4 RHIC collaborations (BRAHMS, PHENIX, PHOBOS, STAR)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Case II: Azimuthal Anisotropy, or “Elliptic Flow”
Asymmetry + interactions
creates final state azimuthal
correlations:
lab-plane
elliptic flow
Geometry: asymmetric
initial state
STAR Preliminary
130GeV
Fourier analysis 
1+2v2cos2(lab-plane)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Case II: Azimuthal Anisotropy, or “Elliptic Flow”
Asymmetry + interactions
creates final state azimuthal
correlations:
lab-plane
elliptic flow
Geometry: asymmetric
initial state
STAR Preliminary
130GeV
Finite v2 at high pt
pT > 2GeV: v2 constant
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Method I: Direct Jet Identification



jet-jet correlations in
p+p?
jet-jet correlations
in Au+Au?
Comparison
statistical method
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Method II: High pT Correlations


Statistical leading
particle analysis
Histogram in 2-d


py
px
N: D vs. D
project
d 2 N  D , D 

d  D  d  D 
:
trig , assoc


trig ,trig
d 2 N  D , D 
1 1
D  D  
d D 

Ntrig e
d  D  d  D 
Ntrigger: Total number of trigger
particles: (4<pT<6)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Result: Au+Au Distribution
Mid-Central Au+Au
Harmonic structure

Peaks at 0, ||

Non-zero mean
value

How do we extract
jet signal from
background?

X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Background Subtraction





di-jets
Flow
Combinatorial
background
All D
Resonance decays
jets
Small D
Subtract large D correlations
Isolate intra-jet correlations
Removes di-jet signal
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
First Results: STAR 130 GeV
0-10% Most
Central
Significant peak remains after subtraction
Jets?!
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Jets at 200 GeV
D
Near angle persists after large D subtractions
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Jets at 200 GeV

Shape
Clear
near & away side
signal

Same sign correlation
Unlikely
due to
resonance decays
D
Near angle persists after large D subtractions
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Jets at 200 GeV

Shape
Clear
near & away side
signal

Same sign correlation
Unlikely
due to
resonance decays
di-jets in Au+Au?
Near angle persists after large D subtractions
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
D
Jet Charge
e e  uu
Measured by DELPHI
Well described by
LUND string model
Expect opposite charge sign between leading,
next-to-leading charged particles
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Jets at 200 GeV
Charge Ordering

Fragmentation
well described by
string model

Gaussian fit to
near-side: D  0.75

Ratio of Gaussian Yields
System
opposite/same
LUND String
2.6 (0.7)
p+p
2.7 (0.9)
0-10% Au+Au
2.5 (0.6)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
D
Jets at 200 GeV
Charge Ordering

Fragmentation
well described by
string model

Gaussian fit to
near-side: D  0.75

Gaussian Width
System
opposite
same
p+p
0.17 (.04)
0.16 (.05)
0-10% AuAu
0.20 (.05)
0.15 (.07)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
D
What Have we Shown?
First direct evidence of
jets at RHIC
What about di-jets at RHIC?
Study away side in Au+Au
But… large D subtraction removes
away side
Need different method to deal with
background

X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Reference Model


Incorporate known sources
of signal and dominant
background

D model  D pp  B 1  2 v22 cos  2D 
Au+Au correlations:
 Jets
 di-jets
 elliptic flow
 multiple hardscatterings per event
X MSPF 2/Nov/2002
STAR Preliminary 130 GeV
Manuel Calderón de la Barca

Reference Model

Algorithm:

D model  D pp  B 1  2v22 cos  2D 
Au+Au
measurement
Background term
Fit B in non-jet
region
0.75  D  2.25
pp measurement
Add p+p to
background term
X MSPF 2/Nov/2002
Manuel Calderón de la Barca

Data Comparison to Ref. Model

Absolute scale


4/7 centrality bins


Background contribution
increases with centrality
Other bins qualitatively,
quantitatively similar
Near side well matched
for all centralities
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Data Comparison to Ref. Model



Away-side suppression
Suppression increases
with increasing
centrality
Quantify with centrality:
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Quantify with Ratio
AuAu = pp + background
 AuAu - background = pp
AuAu - background
I 
1
pp
Au+Au Measurement
background

AuAu
2

D

B
1

2
v
D2
2 cos  2D 
I AA  D , D2    d  D  
pp
D1
D

p+p Measurement
X MSPF 2/Nov/2002
Manuel Calderón de la Barca




Dissappearance of the Jets from the Far Side
I AA 
Centrality dependent numerator
Common denominator

AuAu - background
pp
Sys. errors: v2 +5/-20%
Away-side suppression in
central Au+Au
HIJING model: constant ratio=1
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
D
D
Suppression of away-side jet consistent with strong
absorption in bulk, emission dominantly from surface
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
s dependence (200/130) at high pT
Inclusive spectra: growth
with s follows pQCD
prediction (XN Wang)

(systematic uncertainties are
correlated – better estimates in
progress)
v2: independent of
s for pT>2 GeV/c
Geometric origin
of v2 at high pT?

Rates change but shape does not.
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Away side suppression: open issues
Why not 1 for peripheral?
Preliminary
 evidently not due to experimental
near side
error or uncertainty
 not due to mismeasured v2: even
v2=0 has little effect for most
peripheral and central
Initial state effects:
away side
peripheral
Shadowing in Au+Au?
Nuclear kT: Initial state multiple scattering D
Hijing estimate: Maximum 20% effect
Resolution: Need to measure in d+Au
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
central
Summary of STAR high pT measurements
hadrons at pT>~3 GeV/c are jet fragments
 central Au+Au:

strong suppression of inclusive yield at pT>5
GeV/c
 suppression factor ~ constant for 5<pT<12 GeV/c
 large elliptic flow, finite for non-central to pT~6
GeV/c
 strong suppression of back-to-back hadron pairs


Possible interpretation:
Hard scattered partons (or their fragments)
interact strongly with medium
Observed fragments are emitted from the surface
of the hot & dense zone created in the collision
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
?
And back to our original question…
If partons absorbed: large DE  large gluon
But have not yet proven partonic DE: where does absorption occur?
•Is it an initial state, partonic effect, or late hadronic effect?
• theory input: what are experimental handles to distinguish
hadronic from partonic absorption? (e.g. correlation function widths)
JETS
JETS
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Extra Slides
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Look for partonic energy loss in dense matter
Thick plasma (Baier et al.):
DEBDMS
2
 Debye
qˆ 
  S  glue
glue
Gluon bremsstrahlung
Thin plasma
(Gyulassy et al.):
DEGLV
C R s 2 ~

qˆL v
4
 2 E jet 
 CR  dglue  , r  Log 2 
 L
3
S
Linear dependence on gluon density glue:
• measure DE  gluon density at early hot, dense phase
High gluon density requires deconfined matter (“indirect” QGP signature)
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Future
Coming run: 50% of full barrel Electromagnetic Calorimeter
• triggers: high tower, ET, jet
• jets, 0, g, electrons
d+Au:
• Cronin effect/nuclear <kT>
•enhancement of inclusive yield
• suppression of back-to-back pairs
• gluon shadowing
Long term:
• g-jet coincidences (“ultimate” jet energy loss
experiment)
• heavy quark jets (dead cone effect)
• surprises….
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Soft Physics

Chemical Freezeout ~ 170 MeV


Lattice 160 - 180 MeV
Collective motion

Large “Elliptic flow”
• Large pressure gradients in the system

System seems to approach thermodynamic
equilibrium
Kinetic freezeout ~ 110 MeV

Freezeout seems to be very fast, almost explosive

X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Energy loss in cold matter
Wang and Wang, hep-ph/0202105
F. Arleo, hep-ph/0201066
Modification of fragmentation
fn in e-A: dE/dx ~ 0.5 GeV/fm
for 10 GeV quark
X MSPF 2/Nov/2002
x1
Drell-Yan production in -A:
dE/dx <0.2 GeV/fm for 50
GeV quark
Manuel Calderón de la Barca
Inclusive hadron suppression at RHIC
Phenix 0: peripheral and
central over measured p+p
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
STAR charged hadrons:
central/peripheral
v2: comparison to parton cascade
Parton cascade (D. Molnar)
Detailed agreement if:
• 5x minijet multiplicity from HIJING or
• 13x pQCD gggg cross section
 extreme initial densities or very large cross sections
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
v2: centrality and pT dependence
Preliminar
y
broad plateau, v2 finite at pT~10 GeV/c
except for most central collisions
significant in-medium interactions to very
high pT
Shuryak (nucl-th/0112042): plateau exhausts
initial spatial anisotropy
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Near-angle correlations at high pT
• Jet core: D x D ~ 0.5 x 0.5
 look at near-side correlations (D~0) of high pT hadron pairs
• Complication: elliptic flow
• high pT hadrons that are correlated with reaction plane
orientation are also correlated with each other (~v22)
• but elliptic flow has long range correlation (D > 0.5)
• Solution: compare azimuthal correlation functions for D<0.5 and
D>0.5
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Non-flow effects?
• Non-flow: few particle correlations not related to reaction plane
• jets, resonances, momentum conservation,…
 contrast v2 from reaction plane and higher-order cumulants (Borghini
et al.)
Preliminary
• Non-flow effects are significant
• 4th order cumulants consistent with other non-flow estimates
• But large finite v2 and saturation persist at high pT
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Single Particle Selection



2  pT  6 GeV
0    2
  0.7


   ln  tan 


2  0.7
beam
X MSPF 2/Nov/2002
  0.7
   1.4
Manuel Calderón de la Barca
Away side suppression and nuclear kT
same thresholds for AuAu and
pp
 nuclear <kT>:

Preliminary
near side
 enhances near-side in Au+Au
suppress away-side in Au+Au
 similar centrality dependence

away side
peripheral
central
Stronger near-side
correlation for pTtrig>3 GeV/c
than
pTtrig>4 GeV/c
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Full dataset: 4<pt(trig)<6 GeV/c
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Central Au+Au: 6<pT(trigger)<8 GeV/c
Stronger signal but limited statistics in non-central bins
X MSPF 2/Nov/2002
Manuel Calderón de la Barca
Combinatorial Background






p+p: 1 hard scattering
per event
Expect peak at 0, ||
zero background
Au+Au: many hard
scatterings per event
Expect peak at 0, ||
Flat, non-zero
background
X MSPF 2/Nov/2002
Manuel Calderón de la Barca