Transcript Rossendorf

PRODUCTION OF HIERARCHICALLY ORGANIZED
MICRO- AND NANOMETER SCALE SURFACES :
DEVELOPMENT OF NOVEL TECHNOLOGY FOR
IMPLANT COATINGS AND CELLS GROWTH
PRAMATAROVA Lilyana., Assoc. Prof. Dr.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
72 Tzarigradsko Chaussee, bulv.,
1784 Sofia, Bulgaria
tel: +359-2-7144265
fax: +359-2-9753632
E-mail: [email protected]
Web page: www.issp.bas.bg
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
PARTICIPANTS
1. Institute of Solid State Physics, Bulgarian Academy of Sciences, Assoc. Prof. Dr. L. Pramatarova,
Development of in-vitro systems and production of hydroxyapatite (HA), RTD, Bulgaria;
Address:
Assoc. Prof. Dr. L. Pramatarova
Institute of Solid State Physics, Bulgarian Academy of Sciences
72 Tzarigradsko Chaussee blvd., 1784 Sofia, Bulgaria, tel. +359-2-7144265, fax +359-2-9753632
e-mail: [email protected] , web page: www.issp.bas.bg
2. Pulslight Ltd., Bulgaria (MS. I. Kostadinov), Laser systems and laser processing, (SME), Bulgaria
Address:
Pulslight Ltd.,
72 Tzarigradsko Chaussee, blvd., 1784 Sofia, Bulgaria, tel: +359-2-9743002, fax: +359-2- 9743002
e-mail: [email protected], web page: www.pulslight.com
3. Base BIO POSITIONNING, (SME), France
Dr Didier Mauroy, Leader of the Project, Disposable use microchip for the real-time detection of thrombosis
Address:
Rue de la Citadelle 11
F-33410 Rions, France
tel.: + 33 (0) 556 769 301
e-mail: [email protected]
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
The aim of the proposed project is the development of
novel technology based on a process of laser-liquid-solidinteraction (LLSI) in simulated body fluids (SBF) and its
optimisation as a model of in vitro system for the controllable
production of samples with hierarchically organized micro and
nanometer scale surfaces, typical for nature.
The process of LLSI is based on simultaneously microengineering
of beforehand nanostructured substrate and growth of a layer of
hydroxyapatite (HA) on the surface.
The HAP layer will be used as implant coatings as well as a non viral carrier
in the gene therapy of certain bone pathologies.
For the implementation of the project the groupe is closely cooperated with a
SME (Pulslight LTD, Sofia), ensures the laser system (copper bromide pulsed
laser, equipped with a precise scanning system) necessary for the realization
of the LLSI technology.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
METHOD FOR HYDROXYAPATITE GROWTH INDUCED
BY THE PROCESS OF
LASER-LIQUID-SOLID INTERACTION (LLSI)
• The method of LLSI process employs a deposition system and a
process, which allows interaction between a scanning laser beam
and a liquid precursor solution (simulated body fluid, SBF), and
also simultaneous laser illumination of the substrate during the
laser-liquid interaction, thereby stimulating the nucleation and
growth of hydroxyapatite (HA).
• Variously modified surfaces serve as substrates for the HA
growth, induced by a laser-liquid-solid interaction process.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
SCHEME OF AN IN VITRO SYSTEM ON THE
BASE ON THE PROCESS OF
LASER-LIQUID-SOLID-INTERACTION (LLSI)
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
LASER PARAMETERS:
CuBr (copper bromide) laser
1 = 511 nm
2 = 578 nm
P = 4.5 W (average laser power)
 = 35 ns (pulse duration)
d = 50 m (diameter of laser spot)
f = 1 – 19000 Hz (repetition rate)
N = 1 – 19000 pulses/min
v = 1 – 2000 mm/s (velocity of
scanner)
In the LLSI processing technique external radiation source is used. It is a pulsed
copper bromide vapor laser in visible wavelengths (with energy of the laser
transition 2.4 eV and 2.1 eV for 511 nm - green and for 578 nm yellow line
respectively).
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
DESIGH OF LASER SCANNING
• ARGES scanner head equips the pulsed CBL
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
e-mail: [email protected]
www.pulslight.com/
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Experimental Approach
 Substrates:
- stainless steel and titan- materials, widely used in orthopedic and
dentistry for medical implants
- silicon- widely used material in microelectronics
- quartz (or silica glass)- typical piezo-electric material
- polymers- also find different applications as implants
 Solution:
SBF, supersaturated with respect to calcium and phosphorus
aqueous solution resemble the composition, ion-concentrations and
pH of human blood plasma
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Experimental Approach

Methods for surface modification of the materials
- whole surfase ion implantation;
- ion implantation through mask ;
- laser irradiation of the surface;
- nanostructures;
- porous silicon;
- poly silicon;
- deposition of extracellular matrix proteins;
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: SEM images of hydroxyapatite on modified by ion
implantation of whole surface of SS, S and SG substrates
SS
S
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
SG
Results: Morphology of HA layer grown on the
surfaces iplanted with Ca and P through the mask
Mask design
•
Substrates:
•
Stainless steel (SS)
•
Silicon (S)
•
Silica glass (SG)
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: Applying of LLSI process on the surfaces, implanted
by Ca and P ions through a mask
•SEM results
Mask design
(3)
(2,4)
0.2
0.0
900
1200 1500 3000
3500
-1
Wavenumber (cm )
900 1200 1500
3000
3500
0.4
0.2
SS/initial_LLSI_24h
0.6
SS/CaP_vs_24h
0.8
SS/initial_LLSI_4h
0.2
1.0
SS/CaP_hs_24h
0.4
1.2
SS/CaP_vs_4h
0.4
1.4
SS/CaP_LLSI_24h
0.6
(с)
SS/CaP_hs_4h
(2)
1.6
SS/CaP_LLSI_4h
0.8
(1) SS/CaP_LLSI_0h
(2) SS/CaP_LLSI_4h
(3) SS/CaP_LLSI_24h
(1)
SS/CaP_LLSI_0h
Reflection (a.u.)
1.0
1.2
(1) SS/CaP_hs_4h
(b)
(2) SS/CaP_hs_24h
(3) SS/CaP_vs_4h 1.0
(4) SS/CaP_vs_24h
(3) 0.8
(1)
(4)
(1,3)
0.6
(2)
-1
(a)
Optical density at 962 cm
1.2
•FTIR results
0.0
-1
Wavenumber (cm )
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: HRTEM of nanostructured semiconductors
such as Si or CdSe nanopaticals in SiOx material
The method includes surface modification of substrates by subsequent physical
vapor deposition of SiOx and CdSe at room temperature in two different regimes
or thermal Si nanoparticle growth in SiO (x<2) films.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: SEM , Raman and FTIR studies of nanostructured
CdSe in SiOx thin films after applying of LLSI
SEM
150
(d)
v1 PO4
120
S101
v3 PO4
90 CdSe
60
v PO
v2 PO4 4 4
S79
S47
30
300
600
900
18
FTIR
1200
1500
Reflection (%)
Intensity (a.u.)
Raman
15
(e)
12
9
6
S79
3
S47
S101
0
400
800
1200
1600
-1
Wavenumbers (cm )
Wavenumbers (cm )
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
-1
2000
Results: SEM and EDX studies: Formation of NaCl crystals and
hydroxyapatite layer on nanostructured CdSe in SiOx thin
films after applying LLSI process
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: SEM of porous Silicon (PS)
PS has been shown to be an excellent candidate biomaterial, following studies
establishing its biostability and non-toxicity. These favourable properties, coupled
with the ease of its topographical manipulation, make it an ideal material for the
growth of hydroxyapatite (HA) for use as an artificial bone material. The method
includes surface modification by electrochemical and laser induced chemical
etching.
orientation (111)
orientation (100)
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: Formation of hydroxyapatite layer on
Porous Silicon after applying the process of
laser-liquid-solid interaction (LLSI)
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Amorphous, nano- and polycrystalline silicon films
The films are deposed by magnetron sputtering and metal induced
crystallization at low temperatures (<550oC). Facilities: deposition system
Dion.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: Formation of hydroxyapatite on
polycrystalline silicon films
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Results: Extracellular matrix (ECM) proteins
The method includes surface modification of the substrates by their coating with
ECM proteins - to promote interactions with bone-forming cells.
ECM was observed to act as a matrix for the growth of HA and leads to more
homogeneous layer distribution on the surface and a better arranged structure.
80
HA/ECM/SS, FTIR spectrum
350
70
HA/ECM/SS,
Raman spectrum
300
Intensity (a.u.)
Reflection (%)
60
50
40
30
250
200
150
100
872
50
20
1415 1635
600
10
560
0
500
400
800
-1
Wavenumber (cm )
1200
980-1066
1000
1500
2000
2500
-1
3000
3500
4000
Wavenumber (cm )
40
austenite
HA
Sample
HA/ECM/SS
HA/ECM/SG
HA/ECM/S
Intensity (cps)
30
HA grain size, nm
46 ± 10
36 ± 7
23 ± 5
20
ECM/SG
10
ECM/SS
ECM/S
0
20
30
40
0
50
60
70
2 Theta ( )
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
List of recent publications
1. L. Pramatarova, E. Pecheva, D. Nesheva, Z. Levi, Z. Aneva, R. Pramatarova, U. Bismayer, T. Petrov, Study of modified solid surfaces by
nanostructured CdSe in SiOx thin films, physica status solidi c, v. 0(3) (2003) 1070-1074
2.E. Pecheva, L. Pramatarova, M. F. Maitz, M. T. Pham, Study of the calcium phosphate layer grown on AISI 316 stainless steel from simulated
body fluid, Journal of Materials Science: Materials in Electronics 14 (2003) 775-776
3.L. Pramatarova, E. Pecheva, T. Petrov, N. Minkovski, A. Kondyurin, R. Pramatarova, Ion beam modified surfaces as substrates for
hydroxyapatite growth induced by laser-liquid-solid interaction, Proceedings of SPIE, v. 5449 (2004) 41-45
4.L. Pramatarova, E. Pecheva, T. Petrov, N. Minkovski, A. Kondyurin, R. Pramatarova, Enhancement of hydroxyapatite formation by laser-liquidsolid interaction, Proceedings of SPIE, v. 5449 (2004) 46-50
5.L. Pramatarova, E. Pecheva, M. F. Maitz, M. T. Pham, A. Kondyurin, Ion beam patterning of solid surfaces for hydroxyapatite deposition,
Vacuum, Vol 76/2-3 pp 335-338 (2004)
6.L. Pramatarova, E. Pecheva, T. Petrov, A. Kondyurin, R. Pramatarova, N. Minkovski, Ion beam and laser processing for hydroxyapatite
formation, Vacuum, Vol 76/2-3 pp 339-342 (2004)
7.L. Pramatarova, E. Pecheva, D. Dimova-Malinovska, R. Pramatarova, U. Bismayer, M. Kamenova, T. Petrov, N. Minkovski, Porous silicon as a
substrate for hydroxyapatite growth, Vacuum, Vol 76/2-3 pp 135-138 (2004)
8.E. Pecheva, L. Pramatarova, M. F. Maitz, M. T. Pham, A. Kondyurin, Extracellular matrix used in an in-vitro model system for hydroxyapatite
formation, Annals of Transplantation 9 (1A) (2004) 58-60
9.L. Pramatarova, E. Pecheva, M. F. Maitz, M. T. Pham, A. Kondyurin, Growth of hydroxyapatite layers on solid surfaces patterned by ion
implantation, Annals of Transplantation 9 (1A) (2004) 40-42
10.E. Pecheva, L. Pramatarova, M. F. Maitz, M. T. Pham, A. Kondyuirin, Kinetics of hydroxyapatite deposition on solid substrates modified by
sequential dual implantation of Ca and P ions. Part I. FTIR and Raman spectroscopy study, Applied Surface Science 235 (1-2) (2004) 176-181
11.E. Pecheva, L. Pramatarova, M. F. Maitz, M. T. Pham, A. Kondyuirin, Kinetics of hydroxyapatite deposition on solid substrates modified by
sequential dual implantation of Ca and P ions. Part II. Morphological, composition and structure study, Applied Surface Science 235 (1-2) (2004)
170-175
12.L. Pramatarova, E. Pecheva, , M. F. Maitz, M. T. Pham, A. Kondyurin, R. Pramatarova, P. Montgomery, Analysis of hydroxyapatite films
grown on whole-surface ion implanted substrates for studying the process of biomineralization, Nanoscience and Nanotechnology, eds. E.
Balabanova, I. Dragieva. Heron Press, Sofia, issue 4 (2004) 295-298
13.L. Pramatarova, E. Pecheva, R. Presker, M. Stutzmann, M. Hanzlik, Patterned surfaces for hydroxyapatite in vitro growth, Journal of
Optoelectronics and Advanced Materials, Vol. 7, No. 1, June 2005, p 469-472
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Conference Participation 2004
1. E. Pecheva, L. Pramatarova, George Altankov, Investigation of the fibroblast behavior on different material surfaces, abstract presented at the 9th
Ceramics, Cells and Tissues Meeting, 28 September– 1 October 2004, Faenza, Italy.
2. L. Pramatarova, E. Pecheva, T. Petrov, R. Presker, M. Stutzmann, Hydroxyapatite kinetic deposition on solid substrates induced by laser-liquid-solid
interaction, paper presented at the XIII ISQE 2004 International School on Quantum Electronics Laser Physics and Applications, 20-24 September 2004,
Bourgas, Bulgaria
3. L. Pramatarova, E. Pecheva, D. Dimova-Malinovska, R. Presker, M. Stutzmann, U. Schwarz, R. Kniep, A novel laser-liquid-solid interaction process for
hydroxyapatite formation on porous silicon, paper presented at the XIII ISQE 2004 International School on Quantum Electronics Laser Physics and
Applications, 20-24 September 2004, Bourgas, Bulgaria.
4. L. Pramatarova, E. Pecheva, D. Nesheva, Z. Aneva, A. L. Toth, E. Horvath, F. Riesz, Hydroxyapatite growth on glass/CdSe/SiOx nanostructures, paper
presented at the European Material Research Society Fall Meeting 06 – 10 September 2004, Warsaw, Poland.
5. L. Pramatarova, E. Pecheva, R. Presker, U. Schwarz, R. Kniep, Natural opal as a model system for studying the process of biomineralization, paper
presented at the European Material Research Society Fall Meeting 06 – 10 September 2004, Warsaw, Poland.
6. L. Pramatarova, E. Pecheva, R. Presker, M. Stutzmann, M. Maitz, M. Pham, Patterned surfaces for hydroxyapatite in vitro growth, abstract presented at
NATO Advanced Study Institute: Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology, 6-17
September 2004, Sozopol, Bulgaria.
7. L. Pramatarova, E. Pecheva, D. Dimova-Malinovska, R. Presker, M. Stutzmann, U. Schwarz, R. Kniep, Mechanism of hydroxyapatite formation on porous
silicon in simulated body fluid, abstract presented at NATO Advanced Study Institute: Nanostructured and advanced materials for applications in sensor,
optoelectronic and photovoltaic technology, 6-17 September 2004, Sozopol, Bulgaria.
8. L. Pramatarova, E. Pecheva, R. Presker, M. Stutzmann, M. Maitz and M. Pham, Patterned surfaces for hydroxyapatite in vitro growth, paper presented at
the 13th International School on Condensed Matter Physics, 30 August-3 September 2004, Varna, Bulgaria.
9. L. Pramatarova, E. Pecheva, R. Presker, M.T. Pham, M.F. Maitz, M. Stutzmann, Hydroxyapatite growth induced by native extra cellular matrix deposition
on solid surfaces, paper presented at the European Cells and Materials Conference, 28-30 June 2004, Davos, Switzerland.
10. E. Pecheva, L. Pramatarova, G. Altankov, Fibroblast interaction with different material surfaces, extended abstract presented at the European Cells and
Materials Conference, 28-30 June 2004, Davos, Switzerland.
11. L. D. Pramatarova E. Pecheva, R. Presker, Novel processing technology for production and use of hydroxyapatite nanostructures, Sixth Workshop on
NANOSCIENCE & NANOTECHNOLOGY - November 24-27, 2004, Sofia, Bulgaria
.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Profile of the Pulslight LTD,
Laser systems and laser processing, SME, Bulgaria
•
MS. I. Kostadinov, President
•
•
•
•
•
•
Address:
72 Tzarigradsko chaussee bulv., 1784 Sofia, Bulgaria
tel.: +359 2 9743002
fax: +359 2 9743002
e-mail: [email protected]
http://www.pulslight.com
Abstract : Pulslight Ltd. is interested in the development and manufacturing of Copper Bromide (CuBr) lasers, which are
high power devices that generate pulses of radiation at two wavelengths in the visible region of the spectrum, at 511
and 578 nanometers (nm) as well as in a scientific research and development. Pulslight has scientific collaboration
with the Metal Vapor Laser Group at the ISSP, BAS. (Academic N. Sabotinov) and as a result company has high
expertise, well developed technology and a good market realization. Pulslight is a partner in two R&D projects (EC
funded COPERNICUS Project and NATO funded SCIENCE FOR PEACE Project). The last two years Pulslight Ltd
has scientific collaboration with the Assoc. Prof. Dr L. Pramatarova at the ISSP, BAS, leader of the project
“Development of in vitro system for growing of hydroxyapatite as an implant coating”.
•
The interest for EU project is:.
 Application of a CuBr laser MOPA (master-oscillator-power amplifier) system for precision processing of
various hard materials, drilling of micro-holes, and for the marking and cutting of materials.
 Application of a CuBr laser in a novel method of laser-liquid-solid-interaction (LLSI) for production of
hydroxyapatite coatings on variously modified surfaces of implants.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Profile of the Base
BIO POSITIONNING
Disposable use microchip for the real-time detection of thrombosis
•
Dr Didier Mauroy, Leade of the Project
•
•
•
•
Address:
Rue de la Citadelle 11 , F-33410 Rions, FRANCE
tel.: + 33 (0) 556 769 301
e-mail: [email protected]
•
Abstract : A small French firm has created a new bioelectronic technology able to identify with precision the
risk of thrombosis from three electrochemical components: a consumable made of a microchip equipped with
silicon sensors and a container (capacity equal to a few milliliters), a microchip reader, and a data processing
unit (software + computer). The firm is also specializes in bioelectronic techniques for aqueous
environment.
Base is a start-up developing a biochip (microsystem technology) for the plasma measurement. The
methodology consist in the simultaneous measurement of tree essential electro-chemical parameters to give a
fine position on 3 axes or 3D of the biological field. The use of the future biochip will give real time
measurement at low cost.
The interest for EU project is:
quality control for each plasma like batch;
biocompatibility between in vitro and in vivo conditions;
adequation between in vitro bio resorbable condition and recipient biological field;
position of the plasma like with human thrombosis risk;
•
•




Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Acknowledgements
This research is supported
* by Marie Curie grant No HPMT-CT-2000-00182 of the EC and
* by the Bulgarian National Scientific Research Fund through Grant L1213.
* Assistance provided by the staff of PULSSVET Ltd, Sofia and
* FZR, Dresden, Germany
In cooperation with
* U. Bismayer, Hamburg University, Germany
* M. Stutzmann, Radina Presker, TU-Munich, Walter Schottky Institute
* F. Riesz, Hungarian Academy of Sciences, Hungary,
* A. Medvids, Latvian Academy of Sciences, Latvia
* D. Nesheva and T. Petrov- ISSP, BAS, Bulgaria;
* D. Dimova-Malinovska, CLSENE, BAS, Bulgaria
* Special thanks to my PhD student E. Pecheva
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
•
•
•
•
•
•
•
•
•
•
•
•
•
Workingprogramme area(s):
(FP6-2003-NMP-TI-3-main) Nanotechnologies and Nanosciences
Priority 3 - NMP
Type of Instruments:
Specific Targeted Research Project (STREP)
Integrated project dedicated to SMEs (IPs-SMEs)
Property Rights: Submitted for Bulgarian patent
Stage of Development: Experimental development stage (laboratory prototype)
Subject Description: Health economics, Medicine, Technology, Coatings, Cells, Inspection, Testing
Subject Index Codes: Medicine, Health, Processing, Information, Technological Systems, Measurement Methods
Subject Class: Medicine, Physics, Materials, Industrial manufacturing technologies
Market Applications: Orthopedic implants, Production of lasers, Diagnostic reagents
Research Interest: Biomineralization, Biomaterials, Material technology, Hydroxyapatite, Growth, Simulated body
fluids, Thin films (coatings), Surface modification (patterning), Micro- and Nanostructured surfaces, Laser interaction.
• Country: Any Country
• Experts:
We are seeking partners having an experience in following fields: chemistry and online testing of the solutions, growth
of thin films and coatings, modification and functionalization of the surfaces, biomaterials, surface engineering,
especially partners with well established methodologies for chemical/physical analysis.
We are seeking partners with existing projects or new projects that are still looking for suitable eastern partners.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.
Institute of Solid State Physics, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria, 72 Tzarigradsko Chaussee blvd.