7. Relativity Wave Equations and Field Theories

Download Report

Transcript 7. Relativity Wave Equations and Field Theories

7. Relativity Wave Equations and Field Theories
7.1.
The Klein-Gordon Equation
7.2.
Scalar Field Theory for Free Particles
7.3.
The Dirac Equation and spin-1/2 Particles
7.4.
Spinor Field Theory
7.5.
Weyl and Marjorana Spinors
7.6.
Particles of Spin 1 and 2
7.7.
Wave Equations in Curved Spacetime
Natural Units
c
1
c=1
→
[L]=[T]
=1
→
[ E ] = [ T ]1
Choosing [ E ] = MeV, we have
• [ M ] = [ P ] = [ E ] = MeV
• [ L ] = [ T ] = [ E ] 1 = (MeV) 1
c = 2.997  108 m/s
 = 6.582  1022 MeV  s
1 MeV = 1.602  1013 J
T( s ) = 6.582  1022 T( MeV 1 )
→
L( m ) = 1.937  1013 L( MeV 1 )
M( kg ) = 1.783  1030 M( MeV )
7.1.
p  i  
→
The Klein-Gordon Equation
p p  E 2  p  p  m2
 2

       2  2    m2
 t


W  m    0
2
Klein-Gordon equation
2

W  2  2    
t
D’Alembertian
μμ is a Lorentz scalar →  must be a Lorentz tensor
Only case  = scalar considered.
Conserved Current Density
Statistical interpretation of quantum mechanics requires
existence of a conserved probability density .
4-current density: j    , j

 
 





 m2   0
 m2 *  0
j 
→


Equation of continuity:   j  0 t    j

0   *          *     *       *
i
 *         *

2m

i

 *  
2m
is conserved.

a  b  ab   a  b
However, jμ cannot be the 4-current probability density because
j0 
i
 *  0    0 *

2m
is not positive definite.
Plane Wave Solutions
Plane wave with 4-wavevector k = (k0 , k ):
k  x   exp  ik  x   exp  i k 0t  i k  x 
→
 k  ik k
 k  k  kk  k  k k
 ϕ is a solution to the K-G eq only if
→ energy of the particle is
k k  m
2
 k 0   k 2  m2
2
E  k 0   k 2  m 2  k
E < 0 solutions are unphysical since the vaccuum is at E = 0.
If E < 0 solutions are allowed, ground state is E → .
However, E < 0 solutions are needed to form a complete set of basis functions.
These problems are resolved through the concept of anti-particles.
Precursor to a Quantum Field
Problems of the K-G eq can be fully resolved only by switching to QFT.
Consistent 1-particle relativistic quantum theory does not exist
( particle- antiparticle pairs always emerge spontaneously at sufficiently high E )
Action for the K-G eq:
Conjugate momenta :

L
 0 *
   0 
General solution:
  x  
1
 x  xj 
  f  x    
df
j
dx

L     *      m 2 *
S   d 4x L
d 4k
 2 
* 
L
0



*
   0 
2
2

k

m

   k  exp  ik  x 
3
k  k 2  m 2
x x j


1
  k 0  k     k 0  k 
  k 2  m 2     k 0  k 2  m 2 k 0  k 2  m 2  


 2k 
  x  
where
d 3k
 2   2k 
3
a  k  exp  ik t  i k  x   b  k  exp  ikt  i k  x  
a k    k  k0  
b  k     k  k 0  
k
k  k :
  x  

k
d 3k
 2   2k 
3
d 3k
 2   2k 
3
a  k  exp  ik  x   b  k  exp ik  x   k 0 
k
a  k  exp  ik  x   c*  k  exp  ik  x   0
k  k
c*  k   b  k 
The following aims to find a and c :
  x  
d 3k
 2   2k 
i   x   
0
3
 i k x
d
x
e
 b  :

3
 i k x
d
x

e
 a :
k

Add:
3
d 3k
 2 
3
2
 a  k  exp  ik  x   c*  k  exp  ik  x   0
k  k
a  k  exp  ik  x   c*  k  exp ik  x   0
k  k
(a)
(b)
1
 a  k  exp  ik t   c*  k  exp  ikt  
2
1
3
*

d
x
exp

i
k

x


x

a
k
exp

i

t

c








 k  exp ikt  
k
k

2
i  d 3 x exp  i k  x   0  x  
a  k  exp  ik t    d 3 x exp  i k  x  i  0  x   k  x  

0
a  k    d x exp  ik  x  i    x   k  x    i d x exp ik  x     x 

3
0
3
  d 3 x exp  ik  x  i *  x   k  x  
Subtract:
c*  k  exp  ik t    d 3 x exp  i k  x  i  0  x   k  x  

0
*
c  k    d x exp  ik  x  i    x   k  x    i  d x exp ik  x     x 
3
0 *
*
  d 3 x exp  ik  x  i   x   k *  x  
3
7.2.
Scalar Field Theory for Free Particles
Scalar field → particles are bosons.
 Quantization is expressed by equal-time commutators :
ˆ  x, t    i   x  x 
 ˆ  x, t  , 


ˆ   x, t    i   x  x 
 ˆ  x, t  , 


ˆ
ˆ  
 ˆ  x, t  , ˆ  x, t     

   x, t  ,   x , t    0
ˆ   x, t  , 
ˆ   x, t    0
 ˆ  x, t  , ˆ  x, t     


 
ˆ  x, t  , 
ˆ   x, t    0
 ˆ  x, t  , ˆ  x, t     


 
ˆ   x  ,  ˆ  x   i 
ˆ  x 
aˆ  k , aˆ   k   d 3 x  d 3 x eik xik x  k ˆ  x   i 
k
'

 t t'
  d 3 x  d 3 x eik x ik x k  k '    x  x
 d x e
3
i k k ' t i  k  k x
e
cˆ  k   , cˆ   k      2  2k  k  k  
k  k ' 
t t '
  2  2k  k  k 
3
3
c kills anti-particle of E > 0.
Covariant Normalization
 aˆ  k  , aˆ   k      2  2k  k  k  
changes the normalization of the 1-P eigenstates.
Factor (2π)3 2ωk in
3
 2  2k  k  k     aˆ  k  aˆ   k    aˆ   k   aˆ  k  
3
where
k  aˆ   k  
 k k
aˆ  k    0
For a system with exactly one “particle”, the states { | k  } are complete :
k k
 d k  2 
3
| k  is a free particle state →

x 
d 3k
3
 2  2k
3
2k
I
 k  x  x k  Ck exp i k  x 
k k x 
d 3k
3
 2  2k
k Ck* exp  i k  x 
x x    x  x  
d 3k 
d 3k
3
3
 2  2k   2  2k 
Ck Ck* exp  i k  x  i k   x  k k 
2
d 3k
Ck
*


C
C
exp
i
k

x

i
k

x



  x  x 
k k
3
2k
 2  2k
Ck  2k
→
→
x 
d 3k
 2 
3
2k
k exp  i k  x 
 k  x  x k  2k exp i k  x 
P x   k x

2
 2k
transforms like k0
 2  2k  k  k    k k 
3
is a Lorentz covariant normalization.
Hamiltonian
0 *
j *
2 *
H   0  *0*  L        0         j   m  
 * 

   *       m2 *    *    *       m 2 *
t t
ˆ ˆ  ˆ ˆ
Ignoring the possible ambiguity that may arise from
 ˆ  ˆ

Hˆ   d x 
 ˆ   ˆ  m 2ˆ ˆ 
 t t

we write

3
ˆ  ˆ
d 3k
3
 d x t t   d x  2  2 3
3
 
d 3k 
 2  2   aˆ  k  e

3
   aˆ   k   e i k ' x  cˆ   k   e i k ' x 
i  k k   x
3
d
x
e


 cˆ  k  e  i k  x 
k 0  k
k '0  k '
  2    k  k exp i  k 0  k  0  t 
3
k k , k  k
0
0
ˆ  ˆ
d 3k
 d x t t   4  2 3
3
ik x
k k , k  k
 aˆ  k  aˆ  k   cˆ  k  cˆ  k   cˆ  k  aˆ  k  e


  2    k  k 
3
0
0
 2 i k t
 aˆ   k  cˆ   k  e 2ik t 

 
ˆ   ˆ   d 3 x
d
x



 
3
d 3k 
d 3k
2k  2 
3
 2  2 
k  k    aˆ   k  e i k  x  cˆ  k  e  i k  x 
3
k'
  aˆ  k   e i k ' x  cˆ   k   e i k ' x 

d 3k
4k  2 
 d x m ˆ ˆ  m
3
2

d x 
3
d 3k 
d 3k
2k  2 
3
 2  2 
 aˆ  k  e

3

→
4k2  2 
3

2
k
k 0  k
k '0  k '
 aˆ  k  aˆ  k   cˆ  k  cˆ  k  

d 3k
2k  2 
Vacuum energy:
 cˆ  k  e  i k  x 
 k 2   aˆ   k  aˆ  k   cˆ  k  cˆ   k   cˆ  k  aˆ  k  e  2ik t  aˆ   k  cˆ   k  e 2i k t 
d 3k
ˆ
H 
3
2  2 

ik x
k'
  aˆ  k   e i k ' x  cˆ   k   e i k ' x 
d 3k
k '0  k '
k 2  aˆ   k  aˆ  k   cˆ  k  cˆ   k   cˆ  k  aˆ  k  e  2ik t  aˆ   k  cˆ   k  e 2i k t 
3
2
k 0  k
3


k aˆ   k  aˆ  k   cˆ   k  cˆ  k    2  2k  0 
3
E0   d 3k k  0     0   d 3k k  

Normal Ordering
Determination of structure of spacetime by matter distribution requires E0 = 0.
This is accomplished by writing H in normal ordering : … : ,
which means all creation operators are to the left of all annihilation operators.
Hˆ  
d 3k
2k  2 
k :  aˆ  k  aˆ  k   cˆ  k  cˆ  k   :  

3

d 3k
2k  2 
3
k  aˆ   k  aˆ  k   cˆ   k  cˆ  k  
The technique should be applied to all “total” operators.
Total number operator:
3

d
k
i
3
 0 ˆ
3
0
ˆ

ˆ
ˆ
d x :   :
N  d x : j : 
 2  2 3
2m 
k
 aˆ  k  aˆ  k   cˆ  k  cˆ  k  


j0 is the net probability density so that net number of “particles” is conserved
Some neutral particles are identical to their anti-particles, e.g., γ, π0…
→ Number of γ is not conserved ( necessary if they’re the quanta of EM fields )
Summary
  x  
d 4k
 2 
  k  m    k  exp  ik  x   
3
2
2
a  k    d 3 x exp  ik  x  i  0  x   k  x  
ˆ  x, t    i   x  x 
 ˆ  x, t  , 


3
 2  2k  k  k   
d 3k
 2   2k 
3
c  k    d 3 x exp  ik  x  i  0 *  x   k *  x  
 aˆ  k  , aˆ   k      2  2k  k  k  
3
3
d k
k k
k k
 2  2k
3
 k  x  x k  2k exp i k  x 

Hˆ  
d 3k
L     *      m 2 *
2k  2 
d 3k
2k  2 
3
3
 

I
H   0  *0*  L
 ˆ  ˆ

3

2 ˆ ˆ
ˆ
ˆ
ˆ
H  d x 
     m   

t

t



 a  k  exp  ik  x   c*  k  exp  ik  x   0
k  k
k aˆ   k  aˆ  k   cˆ   k  cˆ  k    2  2k  0 
k :  aˆ   k  aˆ  k   cˆ  k  cˆ   k   :
3

7.3.
The Dirac Equation and spin-1/2 Particles
K-G eq. is 2nd order in t partials → E < 0 solutions.
Remedy: find eq. that’s 1st order in t partials.

Dirac’s choice:

p  m   x    i      m   x   0
Correct 4-momentum →  must satisfy the K-G eq.


 

2
 
2
0   i     m    x         2im     m   x          m   x 
2

→
      
 
→




1  
1  
 
 














         



 
 
2
2
 
 

,        ,           2

Set of all linear combinations of   is called a Dirac algebra.
It is a special case C(V 4(1) ) of the Clifford algebra C(V n(s) ) [see Choquet].
E.g., C(V 1(0) ) = C, C(V 2(0) ) = quarternions , C(V 3(3) ) = Pauli algebra
Standard representation:
0 1
 

1
0


1
Pauli matrices:
For j = ½ ,
1
sj   j
2
 0 i 
 

i
0


2
1 0 
 

0

1


3
Spin ½
 i ,  j   2 i  i j k  k
Angular momenta commutator
 ,   2
Pauli algebra
i
Dirac eq.:
j


0

j
  j



0


I 0 
0
 

 0 I 
j
ij
iσ       
 I  it  m 

      0
I  i  t  m    
 iσ 
Lorentz Covariance and Spin
Transformation of the  Matrices :
Dirac eq.
i 

   m   x   0
is Lorentz covariant if  is a scalar.
  are 44 matrices →  must be a 4 1 matrix
→ covariance not automatic.
Components of γ matrices: ( γμ)αβ with μ = 0,1,2,3 and α, β = 1,2,3,4.
Lorentz transformation:
x   x     '  x 
Covariance →


i 
'
i 
'
  x   '  x  S     x 

  '  m   '  x   0
   '    m  S  x   0
   S 1   ' S   '
spinor
→
→
S  i S 1   ' S    '    m    x   0
 '    S 1   ' S
→
  '   ' S   S 1
The Matrix S
Infinitesimal transformation:
  '          ' '   O  2 
1
S     I  i     O  2 
4
 '    '  0
1
S 1     I  i     O  2 
4
( No need to distinguish primed and unprimed indices in 
since such information does not appear explicitly in S. )
  '   ' S   S 1
1
1

    
 
I

i



I

i








4
4




→



    ' '    
    i                     ' '   
1
4
1
i                
4
( μ → λ )
1
1
1
i                                          
4
2
2
→
  ,     2i          
1
1
i                     →
4
2
   
→
a, b, c   a, b , c   b,  a, c  
  ,    C

 a , b , c  b, a , c

 
  ,  ,     ,  ,  
 4C        
→
       C   ,   
Simplest ansatz:
4C  2i


 , const  2 const 


 2C   ,       ,  
i  
  ,  
2
Generators
Infinitesimal (inverse) Lorentz transformation:
x      ' x     ' x        ' x   O  2 
 x       x   O  2 
Scalar  :
 '  x     x
    x 
x   x  x 


  1      x   
x


  x 


1  
 

  



x



x




x  2 
x 
x  
1
  i   x  p    x  p 
2


1
i    x  p  x  p 
2

 '  x   1  i    x p  x  p      x 
 2



1
 '  x   1  i    x p  x p  
1
2

   x 
Spinor  :
1


 '  x      i         x 
4


1

 1
    i       1  i    x  p  x  p  

4

 2

1
1

   i        x  p  x p     

2
2




1
2


1 
 

2
M    M  

   x 


 1
 

x

exp

i

M

  

  x 

 2

1
  x  p  x p   
M       x  p  x p   I
2
 '  x    I  i  M  
 M  

   x 
→ ½ (42  4) = 6 independent components
Divided into 2 groups :
K M
j
0j
1 i jk jk
J   M
2
i
Spin
 1
 2


   x   exp   i  M    x 
ω0 j ~ boost
→
K j = generator of boost along j-axis.
ωi j ~ rotation
→
J i = rotation generator in the j-k plane ( i j k cyclic )
M
→

1 
    x  p  x p   I
2
1
1
1

J i   i j k M j k   i j k   j k   x j p k  x k p j 
2
2
2

 i j k  k ,  j    i j k 2 i  k j m  m  2 i  i j j m   i m j j   m
 2i  i   i
jj
  4i
i
 i j k  k ,  j   4 i  i
1 i jk jk i i jk j k
     ,  
4
8
i
  i jk
8
 0

j



 j  0  k   0  k  0  j  
 k
 k


j
0  
0   
0  
0  
i i j k   j k   k j
  
8
0


1  i 0 
 
j k
k
j 

     
2 0 i 
0
i
1 i jk j k
1
i
i
  x p  x k p j    x  p    p  x     x  p 

2
2
→
1
J i   i jk
2
i


1
 1 jk

j k
k
j


x
p

x
p

  2  0
 2

J  ΣL
1  i 0 
  

2 0 i
i
0
i

r

p
I


i
 
Li   r  p  I
i
J = total angular momentum, L = orbital angular momentum →  = spin ( ½)
Pauli-Lubanski 4-Vector
A simple 4-vector description of the spin is the Pauli-Lubanski 4-vector
1
1
1
W     M   p           x p  x  p  p
 2

2
2
1
       p
   p p     p p  0
since
4
Wμ is a pseudovector since εμνλσ is a tensor density of weight +1 .
1
1
W0   0     p   i j k i j p k  k p k  Σ  p  W 0
4
4
1 i jk
 
4
jk
 i
1
1
Wi   i     p    i 0 j k 0 j p k   i j 0 k j 0 p k   i j k 0 jk p 0 
4
4
1
1
  i j k   0 j   j 0  p k   i j k 0 jk p 0    4 i j k K j p k   i j k j k p 0 
4
4
   K  p   i p 0
i
W i   K  p   i p 0
i
1
K j  M 0 j   0 j   x0 p j  x j p0  I
2
Caution: T iμaμ is the ith component of a 4-vector, but T i jaj is not.
→
 i j k K j pk   K  p 
i j k   i j k
→
i
has no tensorial meaning in Minkowski space.
i jk K p  
j
k
Let aμ be a 4-vector with spatial part
Then
i jk
K p  K  p
j
k
ai   K  p 
i
i
ai   a i    K  p   i jk K j pk
i
W2 = WμWμ is invariant → it can be evaluated in any convenient coordinate system.
Consider W2 acting on the rest frame of a plane wave with kμ = ( m, 0 ).
p k 0
→
W 2 k  W 0W 0  W iW i  k
→
W 2  m2 Σ2
 m2 Σ2 k
 is the spin operator in the rest frame of the particle with eigenvalue s(s + 1).
Some Properties of the γ Matrices


,

  2

 
0 2
→
 
j 2
I
 I
 0  i     m   0   i  0  i 0 j  j  m  0 
→
i  0    i 0 j  j  m  0 
→
H  i 0 j  j  m 0   0 j p j  m 0
H   

0 
 
→
0 
 
j 
→
  
j 

  
0
p j  m 
j
0

0 

0
  

0 2

 H   0 j p j  m 0

j 
 0    0
 j   j
     0  0
 H

j
 5  i 0 1 2 3 
 
5 2
1
i         
4!
          
0 1 2
3 0 1 2
3

0 2
where
  
1 2
3 1 2
3
  
        for   
       
0 2
1 2
2 2
3 2
  5    0 1 2 3   5 
Define
a    a
Dirac equation:
( not a Lorentz invariant since γ is not a 4-vector )
i   m   0   p  m
Pauli-Lubanski 4-vector:
1
W     , p   5
4
Ex 7.6
I
Conjugate Wavefunction and the Dirac Action
i 

   m   x   0
       0  0
→
→


0    i      m   0



   

i 

  

 m   0   i     m 



    0    0     


  i      m 





4
    0
 

  i    m 


 

S   d x  i   m    d x   i   m 


4


a  a
Conjugate
wavefunction
Conjugate eq.
Dirac action
Probability Current
i 

   m   x   0
→
 

 i    m  0






0  i        i      


→
j        0 
γμ is not a 4-vector → need to show jμ is.
'
j  '  x  '  x  0  
'  x    x  S     0  ' S    x 
 1

S     exp   i    
 4


1
1

S      exp  i       exp  i   0   0 
4

4

1

  0 exp  i      0   0S 1     0
4

        ,    

i
2
i
   0   ,     0
2
  0   0
S      0 S 1    0
→
j  '  x    x  S     0  ' S    x 
   x   0 S 1     ' S    x 
  '   x     x 
  '  j   x 
j 0    0     0
4-vector.
~ probability density
Bilinear Covariants ( Tensors )
Dirac algebra is spanned by 16 basis “numbers”, e.g., I, γ5, γμ, γμγ5, σμν.
Tensor Type
Bilinears
 
Transformation
Scalar
S  x   x   x
S  x  S  x 
Pseudoscalar
P  x   x  5   x
P  x    det   '   P  x 
 x   x    x
V  '  x   ' V   x 
Vector
Pseudovector
Tensor
V


A  x     x    5  x  A '  x    det   '     '  A  x 
T   x     x      x 
T  ' '  x   '  ' T   x 
Covariant Spin Polarization
Spin 1/2 particle in its rest frame:
k    m, 0
n  0, n
n = unit vector along axis of spin polarization.
→
k 2  m2
n2  1
n2  1
k   n  0
In a frame in which the particle is moving with momentum p = k ,
k   k 0, k 
Since
we have
n    n0 , n 
k 2  k 2
k 
0 2
k  n  k   n
n 2  n2
k m
2
mn0  k  n
n 
 n  1
n0 
k  n
m
0 2
2
→
2
k   n  k  n
k 0n 0  k  n  0
By symmetry, n can involve only n and k
n  a k  b n
→
n  a k  2abk  n  b n  a k  2abmn  b
2
2
2
2
2
2
2
0
2
 n

0 2
1
k  n  ak 2  bk  n  ak 2  bmn0  k 0n 0
a k  2abmn k  b m  n
2
Square:
→
0
2
2
2
  k n 
0 2
0 0 2
2
0 2
2
0 2
0 2

b m  n   k    n   k   k 2   k 2




→

4
2
k

a
 m n
→
b2  1
b = +1 since n = n
when k = 0.
k  n
n

 0
2
m k 0  m
k m
k
 k  n

k  n
k  n

n 
,
k  n 
n
k  n
0
0
 m

m k  m
m k  m


Rest frame:
0
0
0
W   0 , mΣ
→
W  n  m Σ  n
Plane Wave Solutions
 k  x   eikx uk
Free particle (plane wave) solution:
i 

   m   x   0
a 
uk   k 
 bk 
→
ak 

→
 k 0  m I
0
 k σ

1
k  σ bk
k0  m

  a    k 0  m  ak  k  σbk 
 k   

0
0
  k  m  I   bk   k  σ ak   k  m  bk 
bk 
 ,    2
i
a  σb  σ  aib j i j
k  σ
2
k I
2
→
j
   m  uk  0
k  σ
1
1
ak  0
k σ 0
k  σ ak
k m
k m
 i ,  j   2 i  i j k k

k
→
spinor
1
k  σ ak
k0  m
 k 0 2  m2  I   k  σ 2


→
ij
 i j  i  i j k k   i j
→
 a i b j  i  i j k  k   i j   i  a  b  σ  a  b I
 k 0 2  m2   k 2


→
k 0  k
k  m 2  k 2
ak


 exp  i  t  k  x    e i k xu
 k    x    1
k
k




k

σ
a
k
 m

 k

1



k

σ
b
k
 k   x    k  m
exp i k t  k  x  




bk


 k   x    k   x  k  k
k
Dirac equation :



k 0  k
 1

k

σ
b
k 
ik  x
  k  m
exp
i

t

k

x





e
vk
k





bk


   m  uk  0
k   m   k  m     k  k  m

k 0  k
 
k
2


   m  vk  0
1  
        k  k  m 2

2
   k k  m2  k 2  m2  0
Interpretation
k0
Rest frame:
0
vk   
 bk 
 ak 
uk   
0
Choose uks and vks to be the eigenstates of the spin Σn :
1
s
Σ  nuk s  s uk s
Σ  nvk s  s vk s
2
W  n uks  msuks
W  n vks  msvks
→
  
uk    
0
 0
vk    
  
where
 1
   
 0
 0
   
1
Frame pμ = kμ:



 ei k x
 k   x   Ck  1


   m k  σ  
 k

   
   
 ks  ks   ks  ks  1
→
 1

k

σ

  i k x
 k   x   Dk  k  m
e







Ck  Dk 
k  m
2m
Charge Conjugation
Charge conjugation : particle ↔ antiparticle
Principle of minimal coupling :
i   eA  m  0
Charge conjugation:  →  C
i   eA  m C  0



Conjugate equation 0    i    eA  m  →  T  i   eA   m  T  0




Set

  T  C 1 C
C 1    i    eA   m  C T  0
→
 C  C  T  C 0T *
 0
2 0
C  i   
2

i


Standard representations →
Exercise:

 k  x
 

C
  k   x 

i 2 

0 
Massless Spin 1/2 Particles
Dirac equation for massless particle:
i   p  0
No rest frame → spin polarization specified by helicity
h  Σ  kˆ
1
1
1
W      , p   5    5   , p     5          p
4
4
4
1
1
1
   5      2       p    5        p    5   p  p  
4
2
2
Massless particle:
1
W    5 p 
2
→ Plane wave  is eigenfunction of W if it is an eigenfunction of γ5.
   R  L
→
R 
 5 R 
1
I   5 

2
1 5
  I    R

2
L 
1
I   5 

2
 5 L 
1 5
  I    L

2
1 5 
W    p
2

 5 R   R
 5 L   L
If  is a plane wave with wavevector kμ ,
then R and L are eigenfunctions of W with eigenvalue ½ kμ and ½ kμ, resp.
m=0 →
k0  k
W0  Σp
→
h R  Σ  pˆ  R 
h L  Σ  pˆ  L 
1 0
1
W R  R
k
2
chiral projections
1 0
1
W L   L
k
2
γ5 = chirality operator
Only for massless particles do the chiral projections have definite helicities.
7.4.
Dirac eq: ρ  0
Spinor Field Theory
but k0 =  ωk
→ 2nd quantization needed for proper interpretation.
Dirac action:
S   d 4 x  i  i  ij    m i j   j
Momentum conjugate to i :
Hamiltonian density :
Hamiltonian :
i 
S
 i  j  0ji  i   0 0   i  i
i
   0 i 


H  i0 i  L  i  i  0 i  i  i  i j    m  i j   j
H   d 3 x i   0  0
2nd Quantization
ˆ  x   
ˆ

d 3k
 2  2k
 x  
3
  bˆ
ks
e  ik  x uk s  dˆks e i k  x vk s
s
d 3k
 2  2k
3


k 0  k
bˆks eik  x uk s  0  dˆk s e  i k x vk s  0
s

k 0  k
uk s   uk s  vk s   vk s  2k  s s
Normalization:
k    k 0 , k 
uk s  0 vk s  vk s  0 uk s  0
3
 i k x
0
ˆ e  ik t
ˆ
d
x
e
u


x

b


ks
ks

→
3
i k x
0
ˆ  eik t
ˆ
d
x
e
v


x

d


ks
ks

i  0ˆ  x   
→
Hˆ  
d 3k
 2  2k
3
d 3k
 2  2k
3
→
→
Ex 7.4
bˆk s   d 3 x eik x uk s 0ˆ  x 
k 0 k
dˆks   d 3 x eik x vk s 0ˆ  x 
k 0 k

ˆ e ik  x u  dˆ  e i k  x v

b
 k ks
ks
ks
ks
s

k
s

bˆks bˆk s  dˆk s dˆks


k 0  k
Non-negativeness of H requires anticommutation relations:
bˆk s , bˆk  s  dˆk s , dˆk  s

 
 

 

bˆk s , bˆk s  dˆk s , dˆk s
 bˆk s , bˆk ' s '
 

 dˆ k s , dˆ k ' s '  0
  2  2 k  s s   k  k  
3
Using commutation relations leads to causality violation
(operators with space-like separation would not commute)

Hˆ  
with
d 3k
 2  2k
3
s
 d 3k k   0
s

ˆ  bˆ  dˆ  dˆ

b
 k ks ks ks ks

removed by normal ordering.
Field Operator Version
 ˆ  x, t  , ˆ  x, t     ˆ  x, t  , ˆ  x, t   0
i
j
i
 ˆ  x, t  , ˆ  x, t    i 
i
j
ij
j
  x  x 
Hˆ   d 3 x :ˆ i  0  0ˆ :
Nˆ   d 3 x : ˆj 0 :   d 3 x :ˆ ˆ :   d 3 x :ˆ  0 ˆ :

d 3k
 2  2k
3

s
bˆks bˆk s  dˆks dˆk s

( Not positive-definite )
Spatial parts of the Dirac wavefunctions should be anticommutating.
7.5.
Weyl and Marjorana Spinors
Weyl (Chiral) Representation ( for Massless Particles ) :
 0
 
 I
0
→
I 
0 
I 0 
5
 

 0 I 
 0 1

 1 0 
  i 2  
i


0

i
  i



0


 
C
 0
0
 
 2  I
 0
C  C 0 T  
 
 i *   i

0 
Chiral Solutions
Weyl representation:
m=0 →
k = ( 0,0,k )
E.g.,
k
k0  k
→
1
0
uR   
0
 
0
m    k
k uk s  k vk s  0
( u and v are linearly dependent )
0 0
0 0

0
kI   3k 
k 
 
3
0 0
0
 kI   k


 0 2k
0
0
 0
  


uL 
 
 


0
  
 0
 
1
 I 0        
 uR  
    uR


 0  I  0   0 
5

mI
k 0 I    k 
m  0


k
I



k
mI


2k
0
0
0
0
0 
0

0
 I 0  0   0 

 uL
 uL  




 0  I         
5
General k
0

k 
 k I  σk
→
 k  
uR  k    

0


Writing
 k I  σk

0

 0 
uL  k   


k


 

  k    aI  σ  b 
  k I  σ  k  k   0

we have
0    k I  σ  k   aI  σ  b    k a I  σ   ak  k b    σ  k  σ  b 
   k a  k  b  I  σ   ak  k b  i k  b 
Simplest solution:
→
→
b  ck
 k a k c  0
2
a kc
ak  k kc  0
  k   c  k I  σ  k   
c = normalization constant.
Normalization
  k   c  k I  σ  k   
 k  k3
 c  1
2
k

i
k

 k  k3
  k   c  k I  σ  k     c  1
 k  i k 2

For c real,
 k  k3 
k1  i k 2   1 
   c  k1  i k 2 
3 

k  k 0


 k 1  i k 2 
k 1  i k 2   0 
   c 
3 
3 


k  k 1
k

k


 k 1  i k 2 
 0 1 k  k3 
   k   c 
 c 
   k 
 1
3 
2


1
0
k

k

 k  i k 


*

uR  
 0
0 
 I


 A11
 0 a   A
 21

 a

 A11
0 
 A21
I 


0



 

0
 0
uL   0   
 I


I 






0 
A12   a 
A a
  11 


0

a


a
A21a







A22   0 
 A21a 
A12   0 



a

A22   a 
 A12a 

0 


a
A12a

 A22a 
σ  aσ  b  a  bI  i a  b  σ
→
uR  k  0 uR  k     c 2  T  k I  σ  k  k I  σ  k   


 2c2  T k I  k σ  k    2 k c 2  k I  σ  k 11
2
 2 k c2  k  k 3 
0
uR  k  0 u R  k   2 k c 2  k  k 3 
 σ  k   i   σ  k   σ  ei 
 k i I  i  k  ei   σ
 i  σ  k    σ  ei   σ  k   k i I  i  k  ei   σ
 σ  k   i  σ  k    σ  k  k i I  i  k  ei   σ 
  σ  k  k i  i  k  ei   kI  k   k  ei   σ

  σ  k  k i  kk i  ei k
→
2
σ
 2 σ  k  k i  k  i
2
uR  k  i uR  k    i  c 2  T  k I  σ  k   i  k I  σ  k   
 2k i c 2  T  k I   σ  k      2k i c 2  k  k 3 

uR  k   uR  k   2k  c 2  k  k 3 
uR  k   uR  k   2k  c 2  k  k 3 
Setting

c
1
k k
3
→
  k  

σk 
I 
 
3
k 
k k 
k
uR  k   uR  k  uL  k   uL  k   2k 
uR  k   uL  k  uL  k   uR k   0
orthonormality
Charge Conjugation
The chiral solution are also related by charge conjugation:
uRC  k   C 0T uR* k 
 

 0
  0   0


 0    I
 I    *  k  


0   0 
0
0 0  
  0 
   * k     * k     k   uL  k 
     
  
   
uRC  k   uL  k 
  0   0
u  k   C u  k   
  I
0



C
L
0T *
L
 

 0
I   0 


0    *  k  
0    *  k     *  k       k  
 u k 

 
 

   0   0   0  R
uLC  k   uR  k 
2nd Quantization
ˆ  x   
d 3k
 2 
3
bˆR  k  e  i k  xuR  k   dˆR  k  ei k  xu L  k   bˆL  k  e i k  xu L  k   dˆL  k  ei k xu R  k  

2k 
ˆ  x  ˆ R  x  ˆ L  x 
ˆ R  x   
ˆ L  x   
d 3k
ˆ  k  e  i k  xu  k   dˆ   k  ei k  xu  k  

b
R
R
L
R
3


 2  2 k
d 3k
ˆ  k  e  i k  xu  k   dˆ   k  ei k  xu  k  

b
L
L
R
L
3

 2  2 k 
Matrix form:
Weyl representation:
 R   0 
         R  L
 0   L 
Dirac equation:
0
i  0  i σ   

i   i   


i


i
σ


0
0



m
i  0  i σ    R 

i    m   i   i σ  
 

m
0

  L 

m
i  0  i σ    R    i  0  i σ    L  mR 

0

   
m
 i  0  i σ  
  L    i  0  i σ    R  mL 
→
 i0  i σ  L  mR
 i0  i σ R  mL

0
i  0  i σ    R 

i  R  i  R  
 

i


i
σ


0
0

 0 

0

  0 

 m L
 


i


i
σ



 R   mL 
0

i  R  m L
0
i  0  i σ    0 

i  L  i  L  
 

i


i
σ


0
0

  L 

  i  0  i σ    R   mR 

   0   m R
0


 
i  L  m R
Weyl Spinors
From Ex.7.9:
Action:
   L R  R L
    L  L  R  R
S   d 4 x   i   m 
  d 4 x  Li  L  R i  R  m  L R  R L  
m=0 →
S   d 4 x  Li  L   Ri  R 
( R and L decoupled )
→ Either R or L alone describes a self-consistent theory.
Spinors in this reduced theory are called Weyl spinors.
E.g., in a theory involving only L, the operators are
bˆL  k  , dˆR  k  , bˆL  k  , dˆR  k 
→ there are only left-handed particles and right-handed antiparticles.
For a theory involving only R, the opposite is true.
Both theories are entirely equivalent, physically as well as mathematically.
Majorana Spinors
A spin ½ particle which is its own anti-particle can access only 2 of the 4 spinor
states allowed by the Dirac equation.
The field operator M for such a particle is called a Majorana spinor.
By definition
 MC  x    M  x 
If the particle is also massless, we have
ˆ M  x   
→
d 3k
ˆ  k  e  i k  x u  k   ˆ   k  ei k  xu  k   ˆ  k  e  i k  xu  k   ˆ   k  ei k  xu  k  


R
R
R
L
L
L
L
R
3

 2  2 k 
1
S   d x i  M     M
2
4

→
→
1
S

i  M 0
M 
   0 M  2

3
ˆA  k  , ˆB  k     2  2 k  AB   k  k  
ˆ  x, t  , ˆ  x, t   i  x  x I
M
M
A, B  R, L
Proof ?
For non-interacting massless particles, Weyl & Majorana spinors are equivalent.
E.g.
ˆM  x   ˆ L  x  ˆ LC  x 

d 3k
ˆ  k  e  i k x u  k   dˆ   k  ei k x u  k 

b
L
L
R
L
3

2

2
k
 
 bˆL  k  ei k  x uR  k   dˆR  k  e  i k xu R  k  
Corresponding action:
S   d 4x
1
4

i M    M   d x i  L   L
2
This equivalence is broken in the presence of interactions.
7.6.
Particles of Spin 1 and 2
Maxwell equations in a source-free region:
0    F      A    A  WA   A
Proca equation:
WA  m2 A  0
Consider the gauge transformation:
Setting
In this context,
WA   A  0
WA  m2 A   A  0
 WA  m2 A  W A  m2  A  0
→
→
W   A
  A  0
→
  A  0
( Klein-Gordon eq for Aμ )
A  A  A   
gives
 A   A    0
is called the Lorentz condition.
Aμ is said to be in the Lorentz gauge.
Spin
Lorentz transformation:
A  x   ' A  x 
or
  x   '  x  S     x 
Comparing with
A  x   A x 
gives
S    
Hence, the “spin” part of the infinitesimal generators M are simply the
generators of the Lorentz transformation on x.
The spin part of Ki ( i ) denotes a boost (rotation):
0
1
iK 1  
0

0
0
0
1
i   
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0 
0

0
0 0
0 0 
0 1

1 0
0
0
iK 2  
1

0
0
0
0
0
0 0
0 0
2
i   
0 0

 0 1
0
0 
0

0
1
0
0
0
0
0
0
0
0
1 
0

0
0
0
3
iK  
0

1
0
0
0
0
0
0
i  3  
0

0
0 0
0 1
1 0
0 0
0
0
0
0
1
0 
0

0
0
0 
0

0
Plane wave solution:
Lorentz condition →
Ak  x    eikx
polarization vector εμ
is a column matrix
 Ak  i keikx  0
→
  k  0
For a massive particle, k μ = ( m, 0 ) in the rest frame.
The Pauli- Lubanski vector becomes
W    0, Σm
→
0
0
0
0


Σ  Σ  i2 
2

0
 0 2 I 

0
W W  W W  m2 Σ  Σ
0
1
0
0
0
0
1
0
0
0 
0

1
→
s  s  1  2
→
s 1
Secular equations for all three matrices i are the same, i.e.,
 2   2  1  0
  0,0,1, 1.
so that
The corresponding (orthonormalized) eigenvectors for 3 are
 0
 
1 1
1 
2 i
 
 0
 0
 0
0   
 0
 
1
0
 
1 1
 1 
2  i 
 
0
1
 0
 0   
 0
 
 0
ε0 is not an acceptable solution since
 0 


k  m  0
 ;   1,0, 1
( Lorentz condition violated )
form a basis for the polarization of the spin 1 particle.
Wrt this basis, ΣΣ is effectively a unit matrix.
k   k ,0,0, k 
For massless particles
 A  0
W0
h  0  3
k

k    k  0   3   0
→
→ 0 3
The last condition is satisfied by
 0
 
1 1
1 
2 i
 
 0

k
 L 
k
0
 
1 1
 1 
2  i 
 
0
→
→
→
→
→
1
 
0


L  0  0 
0
 
1
polarization εL is longitudinal
corresponding plane wave is pure gauge ( ~ Aμ = 0 )
photon has only 2 polarizations h = 1
complications in quantization scheme
path integral
Gravitons
 B
g   x   g 
 x   h  x 
Source free regions :
To 1st order in h(x) :
Field eq.
→
 B
g 
 x   
T  x   0

R  0
Field eq. →
1 
  h ,   h ,  h  ,  
2


R  R   ,    ,      
 ,    ,
1 
1 
  h  ,   h ,    h ,      h  ,   h  ,   h  , 
2
2
   h ,   h ,  h ,   h ,   0
h,,  h,,  h,   h,,  0
  h  Wh   h   h  0
W h     h       h   h   0
0
0
Gauge Invariance
g symmetric → at most 10 independent components in h .
2 different h are equivalent if they lead to the same g in different coordinates.
i.e.,  (gauge) transformations on g that leave all physical properties unchanged.
Gauge invariance further reduces number of independent components of h.
Infinitesimal coordinate transformation:
x  x   x     x
x x 
g   x   g   x     g  x 
x x
x  x 
g   x     g  x          x         x   g  x 



x x
 g   x   g  x      x   g   x      x   O  2 
g   x   g   x   g  x      x   g   x      x   O  2 
Set
g  x     h  x 
g  x     h  x 
To 1st order terms in both h and  ,
h  x   h  x      x      x 
h  x   h  x     x     x 
h  h     
gauge transformation
Harmonic Gauge Condition
Field eq.
→
W h     h       h   h   0
1
1




Wh      h    h        h   h   0
2
2




1

Wh   q    q  0
q   h    h
where
2
Gauge transformation:
h  x   h  x     x     x 
1
q  x     h  x     h  x 
2
1
    h             h  2   
2
1
   h    h                 
2
 q   
 q  x   W  x 
1
q    h    h
2
W  q

 


g
 

q  x  q  x   W  x 
→
q  0
harmonic gauge condition
1  
g g  g ,  g ,   g  , 
2
1  
1
 g   g   g  g   g    g     g  g   g  
2
2


1 

  
 g   h  g  h 
2


g   h    g  h   h  g    h  h  h
→

g 


Field eq. →
g

1
1
 

 

h


h

h

h

 
 

 ~0
2
2


Wh  0
to 1st order in h in
harmonic gauge
( massless K-G eq ) → graviton is massless
Spin
W h     h       h   h   0
Field eq.
Plane wave solution:
hk  x     eikx
  is a symmetric polarization tensor (at most 10 independent components)
In the harmonic gauge,
Gauge condition
→
→
k k   0
1
1


  h    h   i  k   i  k   e ik x  0
2
2


1 

  k    k 
4 constraints on  
2
q  x  q  x   W  x 
E.g.
Wh  0
→
W   x   0
   x   i   eikx with k k   0

for transformation
between harmonic gauges
   x   i   eikx
h  x   h  x     x     x 
→
 h   x    k    k    e  i k  x
Writing
→
hk  x     eikx
hk  x     eikx
      k    k  
  further reduce the number of independent components of   to 2.
~ helicity states of h =  2.
→ Gravition is massless, spin 2.
Helicity states of h = 0,  1 correspond to purely gauge
degrees of freedom and have no physical significance.
Experimental proof of gravitational waves : binary pulsar
No graviton has yet been detected .
7.7.
Scalar Field
Wave Equations in Curved Spacetime
S   d 4 x  g  x   Lmatter  L field 
Lmatter  g   x     *       m 2 *
 g   x     *       m 2 *
L field   R  x  *
 = dimensionless coupling constant, R(x) = Ricci curvature scalar, Λ = 0.
field is the only choice that allows a dimensionless coupling constant.
Note:
   
but

           

Euler-Lagrange equations
S   d 4 x  g  x  L  ,  
For the  degrees of freedom:
           
→
 L

L
 S   d x  g  x    
      0
 

   


4
   ab      a  b  a    b 
  L
 
L  
 d x  g  x          d x  g  x                 
 
 
 
4
L
4
Covariant Gauss’ theorem [see eq(A.23), appendix A.4] →
δ = 0 on S
 L

L
4
d
x

g
x




dS

g
x
  0








       
   


L
L


0
Hence, the covariant Euler-Lagrange equations are


   
L  g   x     *       m 2 *   R  x   *
L
L


0

*
*

    
 g  0
→
→
 m 2       g      0
g        m 2   R    0       m 2   R  
There is no known physical principle that can be used to determine .
Effects of spacetime curvature are too small for measurement of .
The arbitrary case ξ = 0 is called minimal coupling.
Conformal transformation :
Conformal coupling:
g   x     x  g   x 
2
(x) = arbitrary
real function
For ξ= 1/6 and m = 0,
     m 2   R    0
is invariant under a conformal transformation if
  x   1  x    x 
Vierbeins
Let ya be local coordinates at point X with large-scale coordinates xμ = Xμ.
Spacetime is locally flat → g(y) = η.
Transformation matrices :


x
e a  X   a
y
x  X 
a

y
ea   X   
x
x  X 
x  y a x 
e a  x  e   x   a     
x
y x

Orthogonality:
a
x  y b
y b
e a  x  e   x   a   a   ab
y
y x

b
Local inertial frames should vary smoothly from point to point.
→ For a fixed, eμa (x) is a vector field specifying the ya axis at every point x.
e  x  , a  0,1, 2,3 is called a vierbein, a tetrad, or a frame field.
e  x  ,   0,1, 2,3
Likewise

a
a

Verbein e is a 2nd rank tensor whose  and a indices are associated with g(x) & ab .
g  x  ea  x  eb  x   ab
ab ea  x  eb  x   g  x 
The 16 components of e carry 2 kinds of information.
• 10 components specifying g .
• 6 components specifying boost & rotation relating each local frame to a
fixed reference Minkowkian frame.
V   x   ea  x V a  x 
coordinate vector
V a  x   ea  x V   x 
Lorentz vector
Spin Connection
Parallel transport of a Lorentz vector such as
V a  x  x  dx   V a  x    ba  x V b  x  dx
V
→

 x  e a  x V  x 

a
V a  x     x   a  x 
 ba  x  = spin connection
e a  x  dx  e a  x   e a ,  x  dx
V   x  x  dx   e a  x  dx V a  x  x  dx 
e  a  x   e  a ,  x  dx  V a  x    ba  x V b  x  dx 
V   x   e  a ,   x  V a  x   e  a  x   ba  x  V b  x   dx
 V   x   e  a ,  x  e a  x  V   x   e  a  x   ba  x  eb  x  V   x   dx
 V   x   e  a ,  x  e a  x   e  a  x   ba  x  eb  x   V   x  dx
V   x  x  dx   V   x   e  a ,  x  e a  x   e  a  x   ba  x  eb  x   V   x  dx

 V   x   
 xV   x dx


 x  e a ,  x ea  x  e a  x ba  x  eb  x 
→
(a)

ec  e d 
 ec  e d e a , ea  ec  e d e a  ba eb
 ec   a d e a ,   c a  bd  ba  ec  e d ,   cd
→

e c 
 e c e a , ea  e c e a  ba eb

ba  ea  e b ,  ea  e b 
V   V    V 

V  V  
V
e c   a  :
→
→
V a  V a  ba V b
→
Va  Va  ab Vb

e c 
 x  e c e a , ea  e c e a  ba eb  e c ,  e a  ca

 e c  e c ,  
e c  ca e a  0
 e a  0
Vierbein, like g, is invariant under parallel transport
Reminder: e serves the role of g that converts between a and  types of indices.
→
 e a  0
is the compatibility condition between ω & η.
→ magnitudes and angles be invariant under parallel transport:
abV a  x  x  dx V b  x  x  dx   abV a  x V b  x 
V a  x  x  dx   V a  x    ba  x V b  x  dx
→
L.H.S. =
To 1st order in dx:
→
ab V a  x    ca  x V c  x  dx   V b  x    bd  x V d  x  dx 
ab ca x V c  x V b  x  ab bd  x V a  x V d  x   0
ad  ca  x   cb bd   x   V c  x V d  x   0
This can be shown to imply
 g  0
→ d c   x   cd   x   0
i.e., Γ = metric connection.
Spinors
Parallel transport of a spinor :
→
  x  x  dx     x     x   x  dx
  x        x 
Ω = 44 spin matrix
S  x     x   x 
Scalar field:
  x  x  dx      x  x  dx   0    x     x    x   0dx
To 1st order in dx :
S  x  x  dx     x  x  dx   x  x  dx 
   x      x     x   0dx     x     x   x  dx 
S  x    x    x   x  dx    x    x   0  x  dx 
S  x     x    x    0  x   0   x  dx
S is invariant →
  x    0  x   0  0
Lorentz vector :
V a  x     x   a  x 
V a  x  x  dx     x  x  dx   a  x  x  dx 
V a  x     x   a   x    0  x   0 a   x  dx
 V a  x    ba  x V b  x  dx
→
  x   a   x    0  x   0 a   x   ba  x   x   b  x 
 a  x    0  x   0 a  ba  x   b
  x    0  x   0  0
→
 a  x     x   a  ba  x   b
 a ,   x    ba  x   b
  x   ab  x   ab
Consider ansatz
  ,     2i         
     0  0
→
  x    0  x   0  0
for


i  
  ,  
2
 ab       ,       0   0

→
i
2
*
0 0 ab 0 0
*
ab
 0  x   0  ab
x







x






ab
   x   ab  x   ab
→
*
ab
  x   ab  x 
 a ,   x     bc  x   a ,  bc   2i bc  x   ab c   a c b 

a
b
 x
b
  cb  x  
ac
b
1
 bc  x    a c b   a b c 
2

1 ac
 cb  x   b   abbc  x   c 
2
→
i
4
bc  x    bc  x 
i
4
bc  x    bc  x 
→
→
*
ab
  x   ab  x 
  x   ab  x  
is automatically satisfied since ω is real
ab
i
1
ab
  bc  x  
 bc  x    ,   
8
4
Dirac Equation
 μ are defined only for inertial frames →   must be mediated by e.
 Covariant Dirac equation is
Set
   x   ea  x   a
→
i e  a  x   a    m   x   0
i    x     m   x   0


ab





a
b

2
e
x
e
x


2g

x
,

x

e
x
e
x

,

 x
      a   b  

a  b 
( Covariant Clifford / Dirac algebra )
Covariant action :
S   d 4 x  g  x   i    x     m 
 g  det  e a  
There’s no field term because the coupling constant cannot be dimensionless.
E.g., a term like  R  
requires  to have the dimension of length.
Vacuum State Problem
Concept of the vacuum is problematic even in Minkowkian spacetime:
The vacuum state, which by definition contains no particle to an inertial
observer, will appear to an accelerating observer as a thermal bath of
particles with temperature proportional to the acceleration.
A complete proof of this statement is rather involved.
We’ll demonstrate it for the special case of a massless 2-D Hermitian scalar field.
Rindler Coordinates
Massless spin 0 particles in a 2-D Minkowskian spacetime.
Rindler coordinates: (η,ξ)
Inertial frame: (t, x)
t
1

e  sinh  
x
 coth  
t
x
1

x
1
t
→
e  cosh  
→
x t
α>0
for x > 0
Rindler wedge
Inverse:
x2  t 2 
1

2
e
2
→

1
ln  x 2  t 2 

 

1

1
t
1
  tanh 1 
ln 

x
2  1 

t 
x   1 ln x  t
t  
xt

x
t
→
1

e  sinh  
x
1

e  cosh  
dt  e  sinh   d  cosh   d 

dx e
d 2  dt 2  dx 2
→
cosh   d  sinh   d 
 e 2   d  2  d 2 
For an observer at fixed  . The eq of his worldline in an inertial frame is
x t 
2
2
1

2
e
2 
a
2
p
 const
 His velocity in the inertial frame is
→
x u x  a
His acceleration:
2
2 2
a
2
p
dx
2x
 2t  0
dt
→
u
→
dx t

dt x
x

1
a p 1  u2
du
1 t
  2 u  1  u2
dt
x x

3/ 2
ap
Let inertial frame S  be moving with velocity v with respect to S. Then
1 v 

a 
2 3/ 2
1  uv 
3
( see Ex.2.2 )
a
If S  coincides instantaneously with the rest frame of the particle, then v = u ,
a 
a  1  u

2 3/ 2
ap
1
1  u 
2 3/ 2
→
a
ap is the proper acceleration of the observer.
Proper time of the observer is obtained by setting dξ= 0.
d 2  e 2   d  2  d 2 
→
d 2  e2  d 2
With a proper choice of coordinate origins, we have
→
d  e d
  e 
2D Massless Hermitian Scalar Field  (x, t)
ˆ  x, t   
dq
 aˆ q ei q t  iq x  aˆq e i q t i q x 
 2  2 q
  q  q
Klein-Gordon equation inside the Rindler wedge :
2
2
 2 2 




2 

0   2  2    g    e
 2  2 
 t x 
   
Plane wave solution :
  
→
1

ln
k  ,   ei k   
1
xt 1 
 ln  x 2  t 2    ln   x  t  


xt  
 k

ik /
ln   x  t       x  t 
 

k  ,   exp i
Expanding in terms of k (ξ,η),
ˆR  ,   
→
dk
bˆk ei k   i k  bˆk ei k   i k 

 2  2 k 
 ˆ
i k   i k
bˆk   d e
 k ˆR  ,   i
R  , 

  dq  k  q  aˆq   k  q  aˆq 
Caution: bk and bk+ are confined in the Rindler wedge but not aq and aq+.
In general, transformation that relates different sets of solutions to a
wave equation is called a Bogoliubov transformation.
Average Particle Numbers
N  k , k    0 bˆk bˆk  0
| 0  = vacumm state in Minkowskian spacetime →
0 aˆq  0
aˆq 0  0
dk
N  k , k  = number of particles with momentum between k
 2  2 k
and k+dk as seen by a Rindler observer.
Problem: If volume → , then N(k,k) →  even if the density of particles is finite.
Remedy: Use N(k,k) then take limit k → k.
N  k , k     dq  dq 0  aˆq k*  q   aˆq  k*  q    aˆq k   q   aˆq  k   q   0
  dq  dq k*  q   k   q  0 aˆq aˆq 0
  dq  dq k*  q   k   q q q
  dq  dq k*  q   k   q  2  2 q   q  q
Involved manipulation →
 4  dq k*  q   k   q  q

N  k , k    2  2 k   k  k  e
2 k 

1
1

N  k , k    2  2 k   k  k  e

e
2 k


1
1
2 k


1
1
= Bose-Einstein occupation number with
Consider the observer at fixed  = ξ0 .
A positive energy plane wave is
2 k


2

 k e 
0
2 k


exp i k e  0  ik
→

k
k BT
  e 
His proper time is
which represents a particle with energy
→
N  k , k     0
0

 k  k e
0
k BT 
ap
  
e

2
2
0
QED