The World Premier International Research Center (WPI) The

Download Report

Transcript The World Premier International Research Center (WPI) The

Top 5 Program (WPI) in Japan and
Evaluation of Research
Accomplishments
International Chemical Conference、Taipei, 2007
(ICCT 2007)
Yoshinori Yamamoto
Department of Chemistry, Graduate School of
Science, Tohoku University, Sendai, Japan
The World Premier International
Research Center (WPI) Project
The program provides priority support for projects aimed
at creating top world-level research centers staffed at their
core with the world's most leading researchers.
“Global visibility" that attracts top researchers from
around the world
Number of
:
WPI Centers
Period
Expenditures
:
:
Approximately 5
10 years, with possible 5-year
extension for projects with
outstanding results
(An interim evaluation will be
carried out five years after the
project starts.)
Between 500 million yen and 2
billion yen annually per Center
Selected WPI Projects
· The WPI Research Center for Atom·Molecule·Materials
(Tohoku University)
· Institute for the Physics & Mathematics of the Universe
(The University of Tokyo)
· Institute for Integrated Cell-Material Sciences
(Kyoto University)
· Osaka University Immunology Frontier Research Center
(Osaka University)
· International Center for Materials Nanoarchitectonics
(National Institute for Materials Science, Nims)
Objectives of the WPI Research Center
Establish the Premier Research Center for Materials
Invent/develop New Innovative Functional Materials
Contributions to Society
TU WPI
Development of New, Novel
Compounds and Materials
Device Development
System Integration
based on a fundamentally
new approach
through design and
evaluation
Theory
Computer Simulations
Characterization
Evaluation Analysis
Process Technology
Processing Technique
Excellency in TU Research, Past, Present and Future with WPI
Current World Ranking of Tohoku University
(based on citation analysis of ISI, July 2007)
Material Science:
Physics :
Chemistry :
3rd place
9th place
18th place
Past Achievements (Representative Examples)
Novel development of devices for optical communication (J. Nishizawa)
Development of amorphous materials (T. Masumoto)
Discovery of carbon nanotubes (S. Iijima, Ph.D.’65)
Invention of new structural analysis of biopolymers (K. Tanaka, B.S. ‘83)
Recent Achievements
Creative development and practical applications of bulk metallic glasses (A. Inoue)
Current World-Prominent Researchers (based on citation analysis of ISI, July 2007)
A. Inoue: 1st place in Material Science
T. Takahashi: 19th place in Physics
Y. Yamamoto: 17th place in Chemistry
How Can We Achieve the Objectives? Outline of Research Fields & Fusion
Atom.Molecule (Phys, Chem)
Materials
Engineering
Invention of
Substances &
Materials
Inoue, Chen, Itaya
Kawasaki,
Tanigaki, Nishi,
Yamaguchi,
Shimomura, Greer,
Yavari
Inoue, Chen,
Kawasaki,
Tanigaki,
Adschiri,
Shimomura,
Lagally, Hemker
Inoue,
Kawasaki,
Adschiri,
Shimomura,
Lagally, Hemker
Characterization
Takahashi, Yamada,
Nishi
Hashizume, Itaya,
Takahashi,Yamada,
Hashizume,Ikuhara,
Weiss, Xue
Itaya,Ikuhara,
Weiss,Xue
Theory &
Simulation
Tokuyama,Tsukada,
Shluger
Tokuyama,Tsukada,
Shluger, Wan
Shluger, Wan
Device
Development
Xue, Tromp,
Lagally, Hashizume
Miyazaki, Tromp,
Nakazawa, Ohmi
Russell,
Shimomura
Ohmi, Esashi,
Nakazawa,
Greer
Tromp, Nishi,
Esashi
Ohmi, Nakazawa,
Gessner
Esashi, Ohmi,
Gessner
System
Integration
Overseas Network
Overseas Footholds of Tohoku
University around the World
• University of Cambridge
• Royal Institute of
Technology in Stockholm
• University of Lyon
• Russian Academy of Sciences
• University of Oxford
• University of Heidelberg
• Moscow State University
• ETH
• IBM Zurich
• Tohoku University China Office
(Beijing)
• Indian Institute of Science
• Seoul National University
• Korea Advanced Institute of
Science and Technology
• Chinese Academy of Sciences
• Tsinghua University
• University of New South Wales
• University of Sydney
Tohoku University WPI
Total number about 200 (2007)
North
America
Europe
Tohoku
University
WPI
Asia
・
Oceania
through global cooperation
• Tohoku University US Office
(California)
• University of California (SB)
• MIT
• Harvard University
• Stanford University
• Columbia University
• University of Illinois
• University of Wisconsin
• University of Iowa
• Argonne Natl. Lab.
• IBM Watson and Almaden
• Johns Hopkins University
• Penn State University
WPI researcher groups
encompass many regions of the
world (2017)
New System and Research Environment of WPI
Current: Equal reward, equal space, equal treatments based on
traditional promotion system, with the exception of some competitive
grants
Drastic Departure
from Traditional Japanese Equalitarianism
TU WPI
Evaluation/Promotion based
on Performance and Future Potential
Fair Merit System instead of Equalitarianism
Search/Secure Gifted Young Talents and
Encourage/Support “Blue-Sky” Research
WPI Research Center for
Atom·Molecule·Materials
PI; 30 people (11 from US, UK, Germany, France,
and China)
Researchers; 90 people (associate & assistant
professors, postdoctoral fellow; “~30 % “should
be from abroad)
Technicians and Officers; 90 people
WPI-AIMR started on October 1, 2007
One of the Selection Criteria for PI; Citation Analysis
•
•
•
Citation of Y. Yamamoto (on December 4, 2007)
Number of Papers found: 596, Sum of the Times Cited: 17174
Average Citations per Item: 28.82, h-index: 58
Only the first 20 years are displayed.
Only the first 20 years are displayed.
ISI (Thomson, 2006) vs. Scopus (Elsevier,
2007); Ranking of Universities, based on
Times Higher Education Supplement (THES)
1 (1). Harvard
2 (2). Cambridge, Oxford, Yale
.....
17 (19). The University of Tokyo
…..
25 (29). Kyoto University
…..
46 (70). Osaka University
…..
102 (108). National Taiwan University
…..
102 (168). Tohoku University
Scopus covers journals written in languages other than English.
Most Cited 10 Papers in Tetrahedron Letters during
1996-2007
Grubbs, R. H…. RCM activities of Ru-based olefin metathesis catalysts, TL, 1999, 40,
2247, 488
Frustner, A……Ru carbene complexes…….by RCM, TL, 1999, 40, 4787, 255
Miyano, S…..Synthesis of p-tert-butylthiacalix[4]arene…., TL, 1997, 38, 3971, 251
Lygo, B……Asymmetric phase transfer catalysts derived from Cinchona alkaloids…., TL,
1997, 38, 8595, 223
Chan, D. M.T…..New N- and O-arylation with PhB(OH)2 and Cupric Acetate, TL, 1998,
39, 2933, 207
Obika, S…….Duplexes containing nucleosides analogues…TL, 1998, 39, 5401, 204
Nishiyama, M…..N-Arylpiperidines from aryl halides and piperidine under Pd tri-tbutylphosphine catalyst, TL, 1998, 39, 617, 201
Nishiyama, M…..Pd-catalysed synthesis of triarylamines from aryl halides and
diarylamines, TL, 1998, 39, 2367, 198
Kalder, S. W…..Solid-supported nucleophiles and electrophiles for the purification of
non-peptide small molecules, TL, 1996, 37, 7193, 196
Welton, T…..Diels-Alder reactions in room temperature ionic liquids, TL, 1999, 40, 793,
186
Most Cited 10 Papers in Tetrahedron during 19962007
Grubbs, R. H…. Recent advances in olefin metathesis, T, 1998, 54, 4413, 1694
Lindstrom, P…..Microwave assisted organic synthesis, T, 2001, 57, 9225, 1027
Basavaiah, D…..The Baylis-Hillman reaction….T, 1996, 52, 8001, 598
Loupy, A…..A tentative rationalization of microwave effects in organic synthesis,
T, 2001, 57, 9199, 576
Stanforth, S. P. Catalytic cross-coupling reactions in biaryl synthesis, T, 1998,
54, 263, 568
Hermkenns, P. H. H…..Solid-phase organic reactions, T, 1996, 52, 4527, 501
Hanessian, S…..Conformationally constrained amino acids as versatile
scaffolds….T, 1997, 53, 12789, 455
List, B……Proline-catalyzed asymmetric reactions, T, 2002, 58, 5573, 409
Chan, T.-H…..Indium mediated and catalyzed reactions in aqueous media, T,
1999, 55, 11149, 409
Kotha, S…..Recent applications of the Suzuki-Miyaura cross-coupling….., T,
2002, 58, 9633, 407
Elsevier Journals Downloaded Frequently
The Lancet
1.56%
Tetrahedron Letters
1.55%
Cell
0.99%
Countries
USA
24.68%
UK
9.59%
Japan
7.14%
France
5.33%
Biochemical and Biophysical Research
Communications
0.97%
Tetrahedron
0.93%
Korea
5.19%
FEBS Letters
0.87%
China
3.78%
Journal of Chromatography A
0.67%
Canada
3.41%
Journal of Molecular Biology
0.60%
Australia
3.34%
Journal of the American College of
Cardiology
0.58%
Brazil
2.90%
Brain Research
0.55%
Germany
2.84%
Data in 2006
From s- to p-Electrophilic Lewis Acids.
Application to Selective Organic
Transformations
Yoshinori Yamamoto
Department of Chemistry, Graduate
School of Science, Tohoku University,
Sendai, Japan
s-Electrophilic Lewis Acids
LA
X
LA
X
s-binding
X = O, N
LA = AlCl 3, BCl 3, etc.
p-Electrophilic Lewis Acids
LA
LA
LA
LA
LA = PtCl2, CuCl, AuCl, et c.
p-binding
H
LA + S
LA
S
S = Benzaldehyde
LA
BCl3
MgCl2
CuCl
CuCl2
AuCl
AuCl3
PtCl2
H
18.9
34.5
37.4
25.4
33.1
35.9
46.9
H, kcal/mol
50
45
H
Pt
40
Cu
1
O
35
Au
30
Ag
25
Br
Cl
F
OTf
Anion
BF
4
PF
6
SbF
6
H
H
1
3
2
NH
O
LA
BCl3
H1/H3
H2/H3
21.0
46.7
MgCl2
CuCl
CuCl2
2.3
1.1
1.8
2.9
1.6
2.9
AuCl
1.0
1.5
AuCl3
1.1
1.9
H2/H3
Ag
1.8
1.6
Au
Cu
1.4 Pt
H1/H3
Ag
1.2
1.0
Cu
Au
Pt
0.8
Br
Cl
F
OTf
Anion
BF
4
PF
6
SbF
6
PtCl2
1.0
1.4
s-Electrophilic Lewis Acids
LA
X
X
LA
s-binding
X = O, N
LA = AlCl 3, BCl 3, etc.
Allylation-RCM Strategy
Bu3Sn
H
O
H
O
LA
+OR
O
H
O
LA
H
R = COCH2Cl
H
allylation
O
H
H
O
O
H
O
H
H
O
O
O
H
H
RCM
H
O
H
H
H
Total Synthesis of Brevetoxin B
Retrosynthetic Analysis
Me
H
A
O
O Me
O
B
O
H
H
C
H O
H
E
D
H
Me
O Me
H
Me
F
H
H H
O
G
O
HO
Me
H O
J
I
O H
H
H
H O
Me
Me
H
A
O
H
O
O
B
O
H
H
Me
H
O
O
H
O
D
H
E
H
O
F
O
H H
Me
H
Me
OH
+
H
O
+
O
Me
H
H
OBn
G
F
HO
HO 2C
TESO
Me
Me
SPh
H
G
OTBS
Cl
C
H
H
C
H
B
Ph
O
Me
Me
H
O
Me
K
O
H
K. Nakanishi, et al.
J . Am. Chem. Soc. 1981, 103, 6773.
Brevetoxin B
Me
CHO
OBn
O
Me
J
H
OTBS
K
H
O
OTBDPS
Synthesis of the ABCDEFG Ring Segment (3)
Bu3Sn
H
O
Ph
Me
H
O
O
H
H
O
Me
O
SPh
O
H
Me
O
H
Me
H
H
O
OBn
OBn
Me
AgOTf, MS4A
CH2 Cl2, -78 °C to rt
Me
H
O
O
Me
H
H
O
O
H
O
H
O
H
H
H
H
H H
O
OBn
O
Me
H
78 : 22
PCy 3
Ph
Ru
Cl
PCy 3
72%
NOE
Me
O
Ph
O
Me
B
O
H
H Ha
O
C
H
O
D
H
E
O
Hb H
Me
O
OBn
Me
Cl
H
Me
76%
H
O
Me
+
O
Ph
Me
O
Me
H
OBn
G
F
H
O
Me
JHa-Hb = 9.2 Hx
OBn
H
Me
H
H
Kadota, I.; Takamura, H.; Nishii, H.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9246
Me
H
O
O Me
H
O
H
Me
O Me
O
H
H O
H
H
Me
O
H
H O
Me
Brevetoxi n B
HO
Me
H O
CHO
O
H
H H
O
O H
H
1H
Synthetic
Natural
NMR Spectra (400 MHz, CDCl3) of Brevetoxin B
p-Electrophilic Lewis Acids
LA
LA
p-binding
LA
LA
LA = PtCl2, CuCl, AuCl, et c.
O
H
+
R
cat. AuCl3
O
R
Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. JACS, 2002, 124, 12650
CHO
R2
AuCl3
R1
O
R
R
O
R
O
R2
2
R
R
Cl3Au
O
R1
R
R1
AuCl3
AuCl3
O
R2
R
AuCl3
O
R
AuCl3
R1
R2
R1
CHO
R2
AuCl3
R1
O
R
R
O
R
O
R2
2
R
R
Cl3Au
O
R1
R
R1
AuCl3
AuCl3
O
R2
R
AuCl3
O
R
AuCl3
R1
R2
R1
Total Synthesis of (+)-Ochromycinone via Gold-Catalyzed
Intramolecular [4 + 2] Benzannulation
H. Pylori is infested in half man's stomach of about
all population and is considered as a leading cause
of gastric ulcer and cancer.
B. J. Mar shall and J. B. Warren won Nobel pr ize
Helicobacter pylori
O
O
in 2005 by distinguished achievement that had
discovered H. Pylor i.
R1
R2
R1 = Me, R2 = R3 = H, R4 = OH
(+)-Ochromycinone
R3
Selective activity against H. pylor i
R4
2)
O
Angucyclinone Group 1)
~ M. C.; Urbano, A. Synlett 2005, 1, 1-25.
1) Carreno,
2) Taniguchi, M.; Nagai, K., Watanabe, M.; Niimura, N.; Suzuki, K.; Tanaka, A. J. Antibiot. 2002, 55, 30-35.
Synthesis of Intramolecular Benzannulation Precursor
CO2H
AgNO3
(NH4)2S2O8
O
Br
MeO
65 %
O
O
Br
MeO
O
MeO
Br
SnCl2, conc HCl
then Me2SO4
50 % aq KOH
MeO
OMe
97 %
MeO
Br
KOtBu
92 %
MeO
diyne segment
Pd2(dba)3 CHCl3
P(tBu)3
MeO
Br
O3, PPh3
79 %
OMe
CHO
MeO
OMe
trans/cis = 95/5
MeO
MeO
TMS
CHO
MeO
OMe
TBAF, AcOH
quant
CHO
MeO
OMe
97 %
Total Synthesis of (+)-Ochromycinone
MeO
MeO
O
2 mol % AuCl3
50 °C, 1 h
CHO
MeO
OMe
84 %
+M
MeO
MeO
OMe
-M
M
MeO O
M
O
MeO
MeO MeO
OMe
O
O
O
O
BCl3
CAN
97 %
MeO
O
(+)-Rubiginone B2
{[ D + 79.6 (c 0.5, CHCl3)}
19
84 %
HO
O
(+)-Ochromycinone
{[ D + 98.4 (c 0.08, CHCl3), 99 % ee}
20
Application of Polycyclic Aromatic Hydrocarbons (PAHs )
electrical conductors
photosensitive devices
F. A. Cotton J. Am. Chem. Soc. 2001, 123, 11655-11663.
R
O
R
n
pharmaceutical agent
H. U. Bryant U.S.1999, 5889000
Organic conductor
Organic solar battery
Synthesis of Chrysene
CHO
10 mol% Cu(OTf)2
+
(CH2Cl)2, HCF2COOH, 100oC
Ph
CHO
10 mol% Cu(OTf)2
+
(CH2Cl)2, HCF2COOH, 100oC
Ph
68%
Ph
Ph
CHO
cat. Cu(OTf)2
+
Ph
Ph
71%
Ph
H+
Ph
Ph
Cu
Ph
Synthetic Plan
X
CHO
+
R
R1
R1
R2
R2
10 mol% Cu(OTf)2
toluene, 0.5 eq H2O, 100oC
Ph
Ph
R1
R2
yield
Me
H
91%
Ph
H
>99%
t
Bu
H
94%
Ph
Me
>99%
Synthesis of Anthracene
I
CHO
+
Ph
Me
(CH2Cl)2, 80oC
Ph
Me
Ph
HCF2COOH
Ph
Ph
(PPh3)2PdCl2
CuI, Et3N
I
10 mol% Cu(OTf)2
Me
49%
10 mol% Cu(OTf)2
Ph
tol, H2O, 100oC
Me
Ph
Ph
85%
quant.
3 steps 42%
Acknowledgment
Computations; Associate Professor Ilya Gridnev
Polycyclic Ether Natural Product Synthesis (s-Electrophilic Lewis Acids);
Associate Professor I. Kadota; Dr. H. Takamura;
Dr. A. Ohno; Dr. C. Kadowaki; Dr. C. Park; Dr. S. Torand; Dr. P. Chan;
Ms. M. Kawada; Ms. S. Saya; Ms. N. Oguro; Ms. K. Sato, Ms. K. Matsuda;
Mr. H. Ueno; Mr. H. Nishii; Mr. T. Abe; Mr. S. Kikuchi; Mr. Y. Sato
Coinage Metal Catalyzed Reactions (p-Electrophilic Lewis Acids);
Associate Professor N. Asao; Assistant Professor T. Jin;
Dr. T. Nogami; Dr. S. Lee; Dr. S. Yudha; Dr. K. Sato; Ms. K. Takahashi;
Mr. T. Kasahara; Mr. H. Aikawa; Mr. Menggenbateer; Ms. Y. Isogai
\; MEXT (Ministry of Education, Science, Culture, Sports, Science and
Technology)