Fluid Mechanics (C.V. analysis) - uni

Download Report

Transcript Fluid Mechanics (C.V. analysis) - uni

Fluid Mechanics (C.V. analysis)
Dept. of Experimental Orthopaedics and Biomechanics
Bioengineering
Reza Abedian (M.Sc.)
Analysis of a Fluid Sys. Flowing through a C.V.
• We use this general representation of a flowing F.S. through a C.V.to
develop a relationship between a F.S. and a C.V. known as:
– The control volume approach, or
– The Raynolds transport theorem
•
Note: the C.V. approach is also called the Eulerian Approach in contrast to the
Lagrangian approach which describes the motion of individual particle as a function of
time
Analysis of a Fluid Sys. Flowing through a C.V.
• Let X = total amount of a fluid property (Mass, Energy, Momentum)
– At time t, C.V. and C.S. coincide, (Xs)t= (XC.V.)t
– At time t + dt , F.S has moved and changed shape
inC .V . volume of fluid entered C.V. in dt carrying
X Cin.V .
Cout.V . volume of fluid leaving C.V. in dt carrying
X Cout.V .
• Thus the amount of Xs at time t + dt is
• Subtraction
( X s )t  t  ( X C .V . )t  t  X Cout.V .  X Cin.V .
( X s )t  t  ( X s )t  ( X C .V . )t  t  ( X C .V . )t  t  X Cout.V .  X Cin.V .
X s  X C .V .  X Cout.V .  X Cin.V .
• Derivation
X s X C .V . X Cout.V . X Cin.V .



t
t
t
t
Continuation of Derivation of Reynold’s Transport
Theorem:
• Last result
X s X C .V . X Cout.V . X Cin.V .



t
t
t
t
• Take limit as t  0
• Reynold’s Transport Theorem
dX s dX C .V . dX Cout.V . dX Cin.V .



dt
dt
dt
dt
Analyzing the Theorem
dX s dX C .V . dX Cout.V . dX Cin.V .



dt
dt 
dt 
dt


1
2
3
4
1: rate of change of total amount of extensive property X within the
moving fluid system
2: rate of change of X contained within the fixed control volume
3: rate of outflow of X through the control surface downstream
4: rate of inflow of X through the control surface upstream
3 – 4  net rate of out flow of X passing through the C.S
• EQUATION STATES that the difference between the rate of change of
X within the system and that within the control volume is equal to the
net rate of outflow from the control volume
dX s dX C .V . dX Cout.V . dX Cin.V .



dt
dt
dt
dt
Why is the Reynold’s transport theorem Important?
• Laws of physics (Newtons 2nd law or conservation of momentum,
conservation of energy and mass) apply to fluid systems…
• It is difficult to follow a fluid system as if flows (Lagrangian approach)
• It is easier to observe fluid characteristics (density, velocity,
pressure, momentum, etc at fixed points in space that is using a
C.V. (Eulerian approach)
• Thus we need a way to relate the behavior of a fluid system (S) to
the quantities that can be observed within a control volume
• Solution: the Reynold’s Transport Theorem
dX s dX C .V . dX Cout.V . dX Cin.V .



dt
dt dt

dt


System
Quantity
C .V . related
Quantities
Equation of Continuity
• No flow across the stream tube sides
• Only flow through the ends of streamtube
• Let X=m in Reynold’s transport theorem
• Conservation of mass
dms dmC .V . dmCout.V . dmCin.V .



dt
dt
dt
dt
dms
0
dt
Equation of Continuity
dmC .V . dmCin.V . dmCout.V . d
d
  (t , x, y, z )


 (  C .V . .)   C .V .   C .V .
dt
dt
dt
dt
dt
t
mCout.V .   2 .Volume2   2 .(v2 t ) A2
mCout.V .
  2 v2 A2
t
t  0
dmCout.V .
  2 v2 A2
dt
dmCin.V .
Similarly :
 1v1 A1
dt
  C .V .
  2 A2 v2  1 A1v1
t

1 A1v1   2 A2 v2   C .V .


t


0
net mass in flow
in C .V . per unit time
rate of change
of density within C .V .
Differential Form of the Equation of Continuity
• Mass flux: mass flow rate = mass/area.time
• u,v and w are all positive and velocities in each directions are as
follows:
velocity  u
– In upstream face in x density  

– In downstream face x
u

velocity

u

dx

x

density     dx

x
fluxes
mC .V .   .dx.dy.dz
(1)
dmCin.V .
 udydz  vdxdz  wdxdy
( 2)
dt

dmCout.V . 
 
u 
 
v 
 
w 

  
dx  u  dx dydz    
dy  v  dy dxdz    
dz  w 
dz dxdy
dt
x 
x 

y

y

z

z








u

 u
 udydz  vdxdz  wdxdy  
dxdydz  u
dxdydz 
(dx) 2 dydz 

x
x
x x
flowrate in

v

 v
w

 w
dxdydz  v
dxdydz 
(dy ) 2 dxdz  
dxdydz  w
dxdydz 
(dz ) 2 dxdy
y
y
y y
z
z
z z


dmCin.V .



 dxdydz ( u )  ( v)  ( w)   higher order terms are negligible
dt
y
z
 x

•
Reynold´s Transport Theprem:
dms
dmC .V .
dm out C .V . dm in C .V .



dt
dt
dt
dt
in
 
 dm in C .V .

dm C .V .



0 
(  dxdydz) 
 d

u


v


w
 x


t
dt

y

z
dt


d
•

t
 



  d
 x u  y v  z w 








u 
v 
w  0
t
x
y
z
d
Differential form of the continuity equation for any kind of flow
3
Vector analysis notation
• In Cartesian cordinates (x,y,z) the unit vectors are

e x  iˆ

e y  ˆj

e z  kˆ
• We use scalar functions Q(x,y,z,t) such as density or temperature as
well as vector functions F(x,y,z,t) such as velocity and momentum
• The „del“ or „nabla“ operator is defined as:
   iˆ
   ˆ   ˆ   
j
k
x
y
z
• Gradient of a scalar function:
 ˆ  ˆ 
grad    iˆ
j
k
x
y
z
• Divergence of a vector function:




  




F
F


F
y
div.F  .F   iˆ  ˆj  kˆ . Fxiˆ  Fy ˆj  Fz kˆ  x 
 z
y
z 
x
y
z
 x


Application to fluid dynamics:
• Let q be the velocity vector of a flow in Cartesian coordinates and ρ
the density,consider the vector flux ρq:

q  uiˆ  vˆj  wkˆ
• Then the divengence of ρq is:





div.( q )  .( q )  u  v  w
x
y
z
• Then the differential form of the continuity equation is:


 .( q )  0
t
• Rule of derivatives of product:
 u v w   




 
   u

u 
v  w   


v
w
x
y
z
x y z   x
y
z


 
T1

T1  .q

T2

  ˆ  ˆ  ˆ  



v
w
 uiˆ  vˆj  wkˆ .
i
j
k   q.
x
y
z

x

y

z


 



u 
v  w  .q  q.
x
y
z
T2  u
Special form of the continuity equation:
• For an incompressible flow:
  const .

0
t

0  .q  0

.q  0
u v w
 
0
x y z
Vorticity
• Another operation related to the „del“ or „Nabla“ operator is the Curl
or Rotational of a vector function F=(FxFyFz)
iˆ




curl .F  rot .F    F 
x
cross
product
Fx
 F Fy 
 
 iˆ z 

y

z


ˆj

y
Fy
kˆ

z
Fz
F
ˆj  Fz  Fx   kˆ y  Fx 
z   x
y 
 x
• The curl operation is used to define the vorticity of a flow


  q
• The vorticity is related to the angular velocity if a fluid particles
• An irrotational flow is one that has no angular velocity, for a 2D flow

  2
in xy plane:
iˆ


 F 
x
u
ˆj

y
v
kˆ
 v u 

 kˆ  
z
 x y 
0
irrotation al flow 
v u

0
x y