Презентация PowerPoint - u

Download Report

Transcript Презентация PowerPoint - u

Nikolaev Institute of Inorganic Chemistry,
Russian Academy of Sciences, Siberian Branch,
Acad. Lavrentiev Av. 3, 630090, Novosibirsk/Russia;
[email protected]
Inclusion of metal-organic complexes
into cucurbit[8]uril
Tatiana V. Mitkina
Novosibirsk
2005
2
The family of cucurbit[n]urils (CB[n])
Guests:
17.5 Å
NH HN
M
NH
8.8 Å
NH
NH
H2N
M
L
9.1 Å
6.9 Å
NH2
L
L
cucurbit[n]uril
С6nH6nLN4nO2n
NH
HN
n = 5M  10
NH
H ND
symmetry
nh
2
dimensions of CB[8]
molecule
2
2
2
L
cucurbit[8]uril (CB[8])
C48H48N32O16
3
Possible approaches to synthesis of
inclusion compounds of metal-organic
complexes into CB[8]
1) “metal aqua-complex + ligand@CB[8]” scheme
2) direct reaction “host + guest”
3) “guest substitution” approach
4
1) The approach “metal aqua-complex +
ligand@CB[8]”
Synthesis of {[Ni(cyclam)]@CB[8]}Cl2 ·16H2O
HN
HN
H
N
NH
cyclam@CB[8]·
4HCl18H2O
+
Ni2+
12-fold excess of
NiCl2·6H2O
Aqueous
solution, reflux,
100°C, 2 h.
N
N
Ni
N
N
yellow crystals,
yield = 89%,
hot water soluble
5
The structure of {[Ni(cyclam)]@CB[8]}Cl2·16H2O
D
Absorption spectra comparison:
0,4
{[Ni(cyclam)]@CB[8]}Cl2*16H2O
[Ni(cyclam)](ClO4)2
0,3
0,2
0,1
side view
 ESI-MS: m/z = 793.245
{[Ni(cyclam)] + CB[8]}2+
 IR: CB[8] vibrations
0,0
300
400
500
600
700
wavelength, nm
800
 X-ray: square-planar
environment of NiII; the angle
between NiN4 plane and
equatorial plane of CB[8] ~ 70°
6
NiII/NiIII
oxidation within the CB[8] cavity.
Synthesis of {[NiIII(cyclam)]@CB[8]}(SO4)1.5·14⅔H2O
{[NiII(cyclam)]@CB[8]}2+ + Ce4+  {[NiIII(cyclam)]@CB[8]}3+ + Ce3+
ESR
hyperfine
structure
 X-ray cryst.: square-planar
environment of NiIII; the angle
between NiN4 plane and equatorial
plane of CB[8] ~ 70°
 IR: CB[8] vibrations, (SO42-) = 1121,
619 cm-1
 Solid-state ESR: low spin (S = ½) d7
square-planar NiIIIN4 (!),
А = 286 G, gx = 2.142, gy = 2.277,
gz = 2.209.
 greenish-yellow crystals, waterinsoluble, yield 88%
2) Direct approach “host + guest”
2+
N
N
Ni
N
N
cucurbit[8]uril
7
2) Direct approach “host + guest”
8
Synthesis of {trans-[M(en)2X2]@CB[8]}Cln·mH2O
(M = CuII, NiII, CoIII ; X = Cl-, H2O)
2+
OH2
NH2
H2N
NH2
H2N
H2N
OH2
NH2
2+
OH2
NH2
H2N
Ni
Co
Cu
NH2
+
Cl
H2N
Cl
cucurbit[8]uril
NH2
H2N
OH2
2) Direct approach “host + guest”
9
Synthesis of {trans-[Co(en)2Cl2]@CB[8]}Cl·17H2O
+
Cl
NH2
Selective inclusion of trans-isomer !
H2N
Co
NH2
H2N
Cl
+
trans
+
+
CB[8]20H2O
H2N
NH2
Co
Cl
Cl
cis
H2N
Cl
H2N
H2N
Cl
Co
NH2
+
H2N
H2N
Aqueous
solution, reflux,
100°C, 2 h.
dark-green crystals,
yield = 97%,
hot water soluble
Orientations of the ethylenediamine
complexes inside the cavity of CB[8]
Cu
10
Co
Ni
Cl
aq
aq
{[Cu(en)2(H2O)2]@CB[8]}2+ {[Ni(en)2(H2O)2]@CB[8]}2+
= 0°,
Cu–N 2.00 Å,
Cu–O 2.55 Å
= 16°,
Ni–N 2.10 Å,
Ni–O 2.13 Å
{[Co(en)2Cl2]@CB[8]}+
= 90°,
Co–N 1.92 Å,
Co–Cl 2.24 Å
Distortion of CB[8] molecule
upon encapsulation of guests
13.01 Å
11.46 Å
Cu
Ni
13.43 Å
14.38 Å
trans-{[Cu(en)2(H2O)2]@CB[8]}2+
trans-{[Ni(en)2(H2O)2]@CB[8]}2+
 = 0.42 Å (Cu–N = 2.00 Å)
 = 2.92 Å (Ni–N = 2.10 Å)
Solution and solid state studies of {trans[M(en)2X2]@CB[8]}Cln·mH2O
(M = CuII, NiII, CoIII ; X = Cl-, H2O)
Cu
Cu
Ni
 X-ray cryst., elemental analysis
 ESI-MS: m/z = 756
{CB[8] + Cu(en)2}2+
 ESR: g|| = 2.212, g = 2.049
 IR: CB[8] vibrations
Co
Co
 Dissociation upon dissolution in
water:
{[Cu(en)2(H2O)2]@CB[8]}2+
[Cu(en)2(H2O)2]2+ + СB[8]
Solution and solid state studies of {trans[M(en)2X2]@CB[8]}Cln·mH2O
(M = CuII, NiII, CoIII ; X = Cl-, H2O)
Cu
Cu
 X-ray cryst., elemental analysis
 ESI-MS: m/z = 510
{CB[8] + Ni(en)2 + Na}3+
Ni
Co
Co
 1H NMR: CB[8] resonanses became
broadened and en signals
disappeared upon inclusion
 IR: CB[8] vibrations
 Stable in solution
 May undergo reactions of guest
substitution
2X + {Y@CB[8]}
X=
 Y + {(X)2@CB[8]}
N
C
N
Solution and solid state studies of {trans[M(en)2X2]@CB[8]}Cln·mH2O
(M = CuII, NiII, CoIII ; X = Cl-, H2O)
Cu
Cu

X-rayspectra
cryst.,comparison:
elementalhypsochromic
analysis
Absorption
schift upon inclusion
2+

ESI-MS:
m/z
=
754
{CB[8]
+
Co(en)
}
2
e, л/моль*см
50
trans-[Co(en)2Cl2]
 IR: CB[8] vibrations
Ni
+
{trans-[Co(en)2Cl2]@CB[8]}
40
 transcis isomerization
°С, 45 hours)
(120
30
3+
H2N
H2N
Co
Co
H2N
10
H2N
H2N
Cl
Co
Cl
H2N
NH2
Co
+
20
+
OH2
OH2
+
NH2
0
350
400
450
500
550
600
650
700
l , нм
1H
NMR-spectra comparison of D2O solutions of
[trans-Co(en)2Cl2]Cl
and {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O
CB[8]
CB[8]
en resonanses are
strongly upfield-shifted
upon inclusion
CB[8]
NH2
(en)
CH2
(en)
+
H2N
Cl
H2N
Cl
Co
H2N
NH2
inclusion
compound
+
Cl
 = - 0.85 ppm
 = - 0.63 ppm
NH2
H2N
Co
NH2
H2N
Cl
Thermogravimetric data for {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O,
trans-[Co(en)2Cl2]Cl and CB[8]17H2O samples
TG,
TG, mg
mg T(decomposition of trans-[Co(en)2Cl2]Cl) increased
120
by 135°С upon inclusion into CB[8]
120
100
100
80
80
||
225°
225°
60
60
360°
|
360°
||
+
40
40
H2N
20
20
Cl
00
-20
-20
H2N
Cl
Co
H2N
NH2
medium: argon
100
100
200
200
300
300
300
400
400
400
500
500
500
600
600
600
700
700
700
800
800
800
Co(en)22Cl
@CB[8]}Cl*17H22OO
trans
trans--[[Co(en)
Cl22]]]@CB[8]}Cl*17H
Cl
CB[8]*17H
trans
-[Co(en)
2O
2Cl2]Cl
trans-[Co(en)2Cl2]Cl
900
900
900
1000
1000
1000
t,t,t,oooCCC
+
Cl
NH2
H2N
Co
NH2
H2N
Cl
3) “Guest substitution” approach
Synthesis of
{[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}(ClO4)4·11H2O
NH
2+
H2N
NH
2+
NH
HN
Ni
NH
HN
H2N
Cu
N
+
2
NH2
Cu
OH2
NH2
N
N
4+
OH2
Water solution,
reflux, 100°C,
3 h.
+
N
N
H2O
N
Cu
NH2
{[Ni(cyclam)]@
CB[8]}Cl2 ·16H2O
10-fold excess of
[Cu(dien)(4,4’-bipy)
(H2O)](ClO4)2
H2N
NH
Violet crystalline powder,
yield 60%
2+
NH
HN
Ni
NH
HN
The X-ray crystal structure of
{[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}(ClO4)4·11H2O
 X-ray cryst. structure,
elemental analysis
 Absorption spectra: l (e): 600
(185), 270 (sh), 240 (46200)
( = l,  e of free guest)
 ESI-MS: m/z = 825.8
{CB[8] + Cu(dien)(4,4´-dipy)}2+
 Solid-state ESR: gz = 2.312, gx
= gy = 2.045 (g|| = 2.24, g = 2.06
for free guest) – Cu-OH2 become
longer
 IR: vibrations of CB[8],
(С=С) and (С=N) 4,4´-dipy,
(R2N-H) dien, (ClO4-)
Conclusion
Inclusion into the cavity of cucurbit[8]uril may be
helpful for:
1) isolation of metal complexes with unusual
oxidation states and coordination environments
2) stabilization of guest complexes in solid state and
in solution towards thermolysis, isomerization etc.
Acknowledgements:
 Prof., Dr. Fedin V. P.; Prof., Dr. Sokolov M. N.
(supervisors)
 Dr. Naumov D. Yu., Dr. Virovets A. V., Dr. Dolgushin F. M.,
Ph. D. student Kuratieva N. V. (X-ray crystallography)
 Dr. Sheludyakova L. A. (IR)
 Dr. Nadolinniy V. A. (ESR)
 Dr. С. Vicent (ESI-MS)
 Dr. Golovin A. V. (1H NMR)
 The laboratory of “Chemistry of cluster and supramolecular
compounds” , IIC SB RAS