Transcript Document

University of Zagreb
Faculty of Mechanical Engineering and Naval Architecture
Department of Energy, Power Engineering and Environment
Chair of Power Engineering and Energy Management
Status – Validation of Eulerian Spray Modelling
Milan Vujanovic
May, 2006
Validation: I-Level project
Version v8.5006 vs. Version v8.5014
Nozzle D – 205 micron diameter
Rail pressure – 500 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
Test Case - Nozzle D – 205 micron diameter
Point
Railpressure
Gas chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Experimental data – injection rate:
Inlet velocity [m/s]
Modified Inlet Flow Velocity 500 bar, Nozzle D 205 micron
injection rate [mm³/ms]
rate at 500 bar
20
rate at 500 bar
15
10
5
500
vel at 500 bar
velmod at 500 bar
400
300
200
100
0
0
-0,5
0
0,5
1
1,5
2
2,5
time [ms]
3
0
0,001
0,002
0,003
time [s]
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
8.5006
8.5014
Validation: I-Level project
Impact of initial k and epsilon values
Nozzle D – 205 micron diameter
Rail pressure – 500 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
Case 1_1
Turb. kin. energy – 10 m2/s2
Turb. length scale – 2e-05 m
Turb. diss. rate –
259 808 m2/s3
Case 6_1
Turb. kin. energy – 250 m2/s2
Turb. length scale – 2e-05 m
Turb. diss. rate –
3.247e+07 m2/s3
Point
Railpressure
Gas
chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
Case 1_1
Turb. kin. energy – 10 m2/s2
Turb. length scale – 2e-05 m
Turb. diss. rate –
259 808 m2/s3
Case 6_1
Turb. kin. energy – 250 m2/s2
Turb. length scale – 2e-05 m
Turb. diss. rate –
3.247e+07 m2/s3
Validation: I-Level project
Impact of constant cε2
Nozzle D – 205 micron diameter
Rail pressure – 500 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
The constant cε2 in the transport equation for the dissipation rate of the
turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
cε2=1.92
cε2=1.8
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06 / 5.0e-07
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
cε2=1.92
cε2=1.8
Validation: I-Level project
Impact of constant cε2
Nozzle D – 205 micron diameter
Rail pressure – 1200 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
The constant cε2 in the transport equation for the dissipation rate of the
turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
5.0e-07
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
1200 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
cε2=1.92
cε2=1.8
Validation: I-Level project
Impact of constant cε2
Nozzle D – 205 micron diameter
Rail pressure – 500 bar
Gas chamber pressure – 54 bar
Gas temperature in chamber - 900 K
The constant cε2 in the transport equation for the dissipation rate of the
turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
500 bar
54 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
cε2=1.92
cε2=1.8
Validation: I-Level project
Impact of constant cε2
Nozzle D – 205 micron diameter
Rail pressure – 800 bar
Gas chamber pressure – 54 bar
Gas temperature in chamber - 900 K
The constant cε2 in the transport equation for the dissipation rate of the
turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92
Calculation settings
Time discretisation:
Upto
upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
0.0026
Δt
2.5e-08
2.5e-07
5.0e-07
5.0e-07
Phase
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 4.5
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
800 bar
54 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
cε2=1.92
cε2=1.8
Validation: I-Level project
Impact of constant cε2
Nozzle D – 205 micron diameter
Rail pressure – 1200 bar
Gas chamber pressure – 54 bar
Gas temperature in chamber - 900 K
The constant cε2 in the transport equation for the dissipation rate of the
turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92
Calculation settings
Time discretisation:
Upto
upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
0.0026
Δt
2.5e-08
2.5e-07
5.0e-07
5.0e-07
Phase
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
1200 bar
54 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
cε2=1.92
cε2=1.8
Validation: I-Level project
k – zeta – f turbulence model
Nozzle D – 205 micron diameter
Rail pressure – 500 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
k – epsilon
k –zeta - f
Validation: I-Level project
k – zeta – f turbulence model
Nozzle D – 205 micron diameter
Rail pressure – 1200 bar
Gas chamber pressure – 54 bar
Gas temperature in chamber - 900 K
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
5.0e-07
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
1200 bar
54 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
k – epsilon
k –zeta - f
Validation: I-Level project
Calculation with nozzle interface
Coupling internal nozzle flow simulation and initialisation of spray calculation
Nozzle D – 205 micron diameter
Rail pressure – 500 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
Using the data of the two phase flow calculation inside the
nozzle as a start and boundary condition for Eulerian spray
calculation
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
500 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
without nozzle interface
with nozzle interface
Validation: I-Level project
Calculation with nozzle interface
Coupling internal nozzle flow simulation and initialisation of spray calculation
Nozzle D – 205 micron diameter
Rail pressure – 1200 bar
Gas chamber pressure – 72 bar
Gas temperature in chamber - 900 K
Using the data of the two phase flow calculation inside the
nozzle as a start and boundary condition for Eulerian spray
calculation
Calculation settings
Time discretisation:
Upto
upto
upto
upto
Time [s]
1.0e-6
1.0e-4
2.0e-4
Δt
2.5e-08
2.5e-07
5.0e-07
upto
0.0026
1.0e-06
The liquid → Diesel → T=373 K
Eulerian spray with 6 phases
Primary brake-up model: Dies.Core Injection
Secondary brake-up model: Wave model
Evaporation model: Abramzon-Sirignano model
Turbulent dispersion coefficient = 6
Phase
Fluid
Class diametre [m]
1
gas
2
droplet
5e-0.6
3
droplet
1e-0.5
4
droplet
2e-0.5
5
droplet
4e-0.5
6
droplet
0.000205
Point
Railpressure
Gas
chamber
pressure
4
1200 bar
72 bar
Temperature
900 K
Penetration for liquid phase and vapour phase compared with experimental results
without nozzle interface
with nozzle interface
University of Zagreb
Faculty of Mechanical Engineering and Naval Architecture
Department of Energy, Power Engineering and Environment
Chair of Power Engineering and Energy Management
The end
2nd phase of validation: I-Level project
Nozzle D – 205 micron diameter
Experimental data – injection rate:
Points
Railpressure
Gas chamber
pressure
1
500 bar
54 bar
900 K
2
800 bar
54 bar
900 K
3
1200 bar
54 bar
900 K
4
500 bar
72 bar
900 K
5
800 bar
72 bar
900 K
6
1200 bar
72 bar
900 K
Temperature
Test Case: I-Level project
injection rate [mm³/ms]
Nozzle D – 205 micron diameter
Experimental data – injection rate:
20
rate at 300 bar
rate at 800 bar
rate at 500 bar
rate at 1200 bar
15
10
5
0
-0,5
0
0,5
1
1,5
2
2,5
time [ms]
3