Transcript Document
The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/D for oxygen ions in Zr0.8Y0.2O1.9 at 800°C. 1 The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/D for oxygen ions in Zr0.8Y0.2O1.9 at 800°C. zq DT k T m 2 V 1 s 1 DT m 2 s 1 zq 2 1.6 1019 C 23 1 k T 1 . 38 10 1073 J K K C 21 .61 V C K 1 K 2 Simpson and Carter (J. Am. Ceram. Soc. 49 (1966) 139) measured the self diffusion coefficient for oxygen in Zr0.85Ca0.15O1.85 and found it to be DO = 2.0·10-7 cm2/s at 1100°C. Calculate the electrical mobility and conductivity of oxygen ions based on this. Assume density of Zr0.85Ca0.15O1.85 5.7g/cm3 and molecular weight 113.15g/mole. 3 SI O Zr O Zr O Zr Zr O Zr O Zr O O Zr O Zr O Zr Zr O Zr O Zr O O Zr O Ca O Zr Zr O Zr O Zr O zq DT k T n z q ZrO2 Zr0.85Ca0.15O1.85 num ber m3 4 Simpson and Carter (J. Am. Ceram. Soc. 49 (1966) 139) measured the self diffusion coefficient for oxygen in Zr0.85Ca0.15O1.85 and found it to be DO = 2.0·10-7 cm2/s at 1100°C. Calculate the electrical mobility and conductivity of oxygen ions based on this. Assume density of Zr0.85Ca0.15O1.85 5.7g/cm3. zq 2 1.6 1019 2 1011 C m 2 s 1 DO k T 1.3810 23 1373 J K 1 K 3.381010 C m 2 s 1 C m 2 s 1 m2 1 1 J K K V C K K V s 5 Electrical conductivity Zahl der Zr0.85Ca0.15O1.85-Einheiten per m3 n z q 5.7 103 6.0221023 0.15 kg m3 m ole1 n 0.11315 kg m ole1 n 4.54 10 27 1 m3 n z q 4.5410 2 1.6 10 3.3810 27 3 19 10 1 1 0.492 1 m C m V s m 2 6 1 For intrinsic silicon, the room-temperature electrical conductivity is 410-4 Ω-1m-1; the electron and hole mobilities are, respectively, 0.14 and 0.048 m2V-1s-1. Compute the electron and hole concentrations at room temperature. n z q n q e p q h 7 For intrinsic silicon, the room-temperature electrical conductivity is 410-4 Ω-1m-1; the electron and hole mobilities are, respectively, 0.14 and 0.048 m2V-1s-1. Compute the electron and hole concentrations at room temperature. Solution: n z q n q e p q h 4 104 1m1 n p q(e h ) 1.6 1019 (0.14 0.048) Cm2V 1s 1 n p 1.331016 m3 8 Calculate concentration of the charge carriers in intrinsic Si in a function of temperature. nil e, h K g Ne N h (mole fractions) 12 K g 0.9 10 Temperature dependence: T exp 3 Eg kT Eg=1.14 eV energy gap, k=8.63∙10-5 eV/K Temperature (K) 300 Kg Ne=Nh 700 1000 9 Intrinsic Silicon nil e, h K g Ne N h (mole fractions) 12 K g 0.9 10 Temperature dependence: T exp 3 Eg kT Eg=1.14 eV energy gap, k=8.63∙10-5 eV/K Temperature (K) 300 Kg 1.83∙10-24 Ne=Nh 1.35∙10-12 700 1000 10 What is the number of the oxygen vacancies in the unit cell of Zr0.8Y0.2O1.9? Assuming the lattice parameter of (cubic) YSZ is 0.54 nm, calculate a concentration of the oxygen vacancies (number per m3). Zr(Y) O Fluoritstruktur (CaF2-Typ) 11 In Zr0.8Y0.2O1.9, how many oxygen vacancies are there per unit cell? If the lattice parameter of (cubic) YSZ is 0.54 nm, calculate the density of vacancies (number per m3) Zr(Y) O Formula NVO 0.1 0.05 N0 2 VO per unit cell NVO 0.05 8 0.4 Vc =0.543∙10-27m3 Fluoritstruktur (CaF2-Typ) nVO 0.05 8 1 1 27 1 0.05 8 2 . 54 10 m3 Vc 0.543 1027 12 Defektkonzentration n/N0 bei verschiedenen Temperaturen n EV exp N0 kT Temperatur [oC] Aktivierungsenergie eV 1 2 8 100 3·10-14 1·10-27 1·10-108 500 3·10-7 1·10-13 8·10-53 1000 1·10-4 1·10-8 2·10-32 1500 1·10-3 2·10-6 2·10-23 2000 6·10-3 4·10-5 2·10-18 13 Write the Kröger-Vink notation for the following fully charged species in MgO: O MgMg • Cation and anion on their normal sites O • Oxygen vacancy VO // VMg • Magnesium vacancy Mg • Interstitial magnesium ion i 14 Write the Kröger-Vink notation for the following species in ZrO2: •Cation and anion on their normal sites •Oxygen vacancy •Zirkonium vacancy •Yttrium dopant substituting Zr •Nitrogen ion (N3-) substituting for oxygen ion Write the Kröger-Vink notation for the following fully charged species in CaTiO3: •Calcium vacancies •Titanium vacances •Oxygen vacances •Ti ions on Ca sites and vice versa •Ti interstitials 15 Write the Kröger-Vink notation for the following species in ZrO2: •Cation and anion on their normal sites ZrZr OO •Oxygen vacancy VO •Zirkonium vacancy VZr//// •Yttrium dopant substituting Zr YZr/ •Nitrogen ion (N3-) sobstituting for oxygen ion N O/ Write the Kröger-Vink notation for the following fully charged species in CaTiO3: VCa// •Calcium vacancies //// V Ti •Titanium vacances V •Oxygen vacances O •Ti ions on Ca sites and vice versa TiCa CaTi// •Ti interstitials Ti i 16 Write the electroneutrality condition for defects in silicon : •pure / •boron-doped nil e h •phosphorous-doped Si B BSi/ h Si P PSi e/ [h ] [e/ ] / Si [ B ] [h ] [ BSi/ ] p Si / [ PSi ] [e/ ] [ PSi ] n nil e h / B B h Si P P e Si / Si n p 17 Write the electroneutrality condition for MO1-x O O 2M M 1 V 2M O2 2 O / M M M/ M M e/ Write the electroneutrality condition for MO1+x (oxygen interstitial sites) Write the electroneutrality condition for M1-xO 1 // 2h O O2 VM O 2 1 / h O O2 VM O 2 Write the electroneutrality condition for M1+xO (metal interstitial sites) 18 Write the electroneutrality condition for MO1-x O O 2M M 1 V 2M O2 2 O / M M M/ 2VO M M/ M M e/ M M/ e / 2VO M M/ n 2VO 19 Write the electroneutrality condition for MO1+x (oxygen interstitial sites) 1 2M O2 2M M Oi// 2 M M M 2Oi// M M M M h M M h 2Oi// M M p 2Oi// 20 Write the electroneutrality condition for M1-xO 1 // 2h O O2 VM O 2 V h V // M / M h p V 2V / M // M 1 2 M O2 2 M M VM// OO 2 1 2M M O2 2M M 2h VM// OO 2 M 21 Write the electroneutrality condition for M1+xO (metal interstitial sites) O O M M M i V // M O V 1 2e O2 2 / n 2 VM// 2 VO 2 M i VM// VM/ e / n 2 VM// VM/ 2 VO 2 M i 22 Mf 10 Metal oxide MeO2 is doped with Mf2O3 at the doping level Me / Me Me 3 At a certain temperature T and oxygen partial pressure 10-9 atm, concentration of oxygen vacancies is 10-3. Make a plot showing dependence of point defects / concentration ( VO , MfMe and e / ) on oxygen partial pressure at T. Identify the charge carriers and regions of intrinsic and extrinsic conductivity. / Mf2O3 2MfMe VO 3OO 1 / Me Me OO 2Me Me VO O2 2 e Me 2K 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 -15 10 e Me 1/ 6 O2 1/ 3 ' Me Konzentration [mol/mol] / ' p -14 10 -13 10 -12 10 -11 10 2K / Mf Me -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 Sauerstoffpartialdruck [atm] ' Me -3 10 -2 10 -1 10 0.5 pO12 / 4 0 10 23 Me Me O O 2Me 1 V O2 2 O / Me / Mf2O3 2MfMe VO 3OO e Me 2 V 2K / O ' Me 1/ 3 Konzentration [mol/mol] Brouwer (Patterson)-Diagramm -1 10 10 -2 10 -3 2K e Me Mf ' 1/ 6 O2 p ' Me 0.5 / Me pO12 / 4 T=const -1/6 -1/4 Mf 0 V / Me O 10 -4 10 -5 10 -6 e / extrinsic intrinsic -15 10 -14 10 -13 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 Sauerstoffpartialdruck [atm] -3 10 -2 10 -1 10 0 10 24 Cobalt oxide: The electronic conductivity of Co1-yO at 1350°C and pO2 = 0.1 atm is 25 S/cm. Thermogravimetric measurements show that y = 0.008 under the same conditions. It is assumed that singly charged cobalt vacancies are the dominating point defects. Identify the charge carriers responsible for the conductivity and calculate their charge mobility. (Assume that the density of CoO at 1350°C equals that at room temperature, 6.4 g/cm3. Atomic weights MCo = 58.93; MO = 16.00; q=1.6∙10-19 C) 0.5O2 2CoCo CoO VCo// 2CoCo OO Co Co Co O O2 2Co 2V 2Co 2O Co CoO Co h CoO / Co Co Platzverhältnis Die Anzahl an Kationenplätzen (K) einer Verbindung KxAy muss immer im richtigen Verhältnis zur Anzahl der Anionenplätze (A) stehen O2 2CoCo CoO 2VCo/ 2CoCo 2h 2OO O2 CoO 2VCo/ 2h 2OO 25 O2 CoO 2VCo/ 2h 2OO h p V / Co n z q 6.4 106 6.0221023 26 1 n 0.008 4.1110 [ 3 ] (58.93 16) m 2500 5 3 . 8 10 Holes mobility 26 19 n z q 4.1110 11.6 10 1 m 1 A m 2 C m 2 m2 3 V C s V C s V 26 m C Nickel oxide: Assume that doubly charged nickel vacancies and holes are the dominating defects in Ni1-yO under oxidising conditions. At 1245°C and pO2 = 1 atm we know the following for the compound: The self diffusion coefficient for nickel: DNi = 9∙10-11 cm2/s Electrical conductivity: σ = 1.4 S/cm (Data from M.L. Volpe and J. Reddy, J. Chem. Phys., 53 (1970) 1117) Nickel vacancy concentration, in site or mole fraction: [VNi’’] = 2.510-4 (Data from W.C. Tripp and N.M. Tallan, J. Am. Ceram. Soc., 53 (1970) 531) (Atomic weights MNi = 58.71, MO = 16.00, density of NiO = 6.67 g/cm3) a) Calculate the charge mobility of the nickel vacancies and the ionic conductivity under the conditions referred to above (Nernst-Einstein Gleichung) b) Calculate the concentration of electron holes under the given conditions, given as site fraction and as volume concentration ( number/m3). c) Calculate the charge mobility of the holes. q=1.6∙10-19 C k=1.38∙10-23 J/K 27 0.5O2 2NiNi NiO VNi// 2NiNi OO NiNi NiO NiNi h V // Ni zq DNi k T n z q V Nernst-Einstein Point „a“ // Ni 28 a) V // Ni nickel vacancies zq 2 1.6 1019 9 1015 13 DNi 1 . 37 10 k T 1.381023 (1245 273) C m 2 s 1 C m 2 s 1 m2 1 1 J K K V C K K V s n z q V // Ni 6.67 106 6.0221023 4 25 1 n 2.5 10 1.3410 [ 3 ] (58.71 16) m 1.341025 2 1.6 1019 1.37 1013 5.87 107 m3 C m2 V 1 s 1 1m1 Compare the obtained value with σ = 1.4 S/cm =140 S/m VNi// are not dominating carriers 29 b) holes 0.5O2 2NiNi NiO VNi// 2NiNi OO NiNi NiO NiNi h 0.5O2 2NiNi NiO VNi// 2NiNi 2h OO 0.5O2 NiO VNi// 2h OO site fraction p h 2 VNi// 2 2.5 10 4 Volume concentration 6 23 6 . 67 10 6 . 022 10 4 25 1 h p 2 2.5 10 2.6910 [ 3 ] (58.71 16) m 30 c) holes σ for nickel vacances 140 5.87 107 5 h 3 . 25 10 n z q 2.691025 11.6 1019 2 1 m 1 A m 2 C m 2 m 3 V C s V C s V m C V 1.37 10 13 // Ni 31 1. Calculate EMF (EMK) at 500 and 1100K for fuel cells in which Methane (CH4) or Hydrogen is used as a fuel. Assume that the partial pressures of all the gaseous reactants are equal 1 bar (pure oxygen at the cathode!). 2. Calculate what will be change of EMF at 1100K in the case of CH4 fuel, assuming total pressure of the gases at both the electrodes 1 bar (pure oxygen at the cathode!) and composition at anode 50%H2O, 25%CO2 and 25%CH4. I. Barin, O. Knacke, „Thermochemical properties of inorganic substances“, SpringerVerlag, 1973 32 ½ O2 + H2 H2O Kathode: ½ O2 + 2e- O2- Gi Gio RT ln ai Anode: O2- + H2 H2O + 2e- ai 1 G GHo 2O GHo 2 0.5GOo2 500K G=-80.965-(-15.996)-0.5·(-24.910)=-52.514 kcal/mol -52.514·1000·4.184=-219719 J/mol G E zF 1100K E=-(-219719)/(2·96486)=1.139V -44.889 kcal/mol -187816 J/mol 0.973V 33 2O2 + CH4 2H2O+CO2 Kathode: 2O2 + 8e- 4O2- Anode: 4O2- + CH4 2H2O + CO2+8e- o o o Go 2GHo 2O GCO G 2 G CH 4 O2 2 G o E zF o 1100K G =-801864 J/mol Eo=-(-801864)/(8·96486)=1.039V 2 p RT H 2 O pCO2 o EE ln zF pCH 4 pO2 2 8.311100 0.52 0.25 E 1.039 ln 1.039 (0.016) 1.055V 2 8 96486 0.251 34 On the diagram show the doping regions for intrinsic and doped silicon at room temperature. K g Ne N h (mole fractions) K g 0.9 10 12 298 3 exp 1.14 1.34 10 24 5 8.63 10 298 n Concentration -4 10 -5 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -14 10 -15 10 -16 10 -17 10 -18 10 -19 10 -20 10 -16 -15 -14 -13 -12 -11 -10 10 10 10 10 10 10 10 n-type K g 1.161012 -9 10 -8 10 Dopand concentration -7 10 -6 10 -5 10 -4 10 p 35 Doped silicon 1. Phosphorus is added to high-purity silicon to give a concentration of 1023m-3 of charge carriers at room temperature. a) Is the material n-type or p-type? b) Calculate the room-temperature conductivity of this material, assuming that electron and hole mobilities (respectively, 0.14 and 0.048 m2V-1s-1) are the same as for the intrinsic material Density of Si 2.33 g/cm3; molecular weight 28.09 g/mol K g 0.9 10 12 1.14 24 298 exp 1 . 34 10 (mole fractions) 8.63 10 5 298 3 q=1.6∙10-19 C 36 1. a) Phosphorus- V group, will act as a donor in silicon b) 1023 m-3 electron concentration is greater than that for the intrinsic case K g ne n p 1.161012 (mole fractions) 2.33106 6.0231023 28 1 nSi 5 10 [ 3 ] 28.09 m ne np 5 1028 (1.341024 )1/ 2 n z q 1023 11.6 1019 0.14 2240 3 1 1 1 m C m V s m 2 1 37 Doped silicon 2. The room-temperature conductivity of intrinsic silicon is 410-4 Ω-1m-1. An extrinsic n-type silicon material is desired having a room-temperature conductivity of 150 Ω-1m-1. a) Specify a donor element type that may be used and its concentration in atom percent. b) Calculate the equilibrium hole concentration Assume that electron and hole mobilities (respectively, 0.14 and 0.048 m2V-1s-1) are the same as for the intrinsic material, and that at room temperature the donor atoms are already ionized. Density of Si 2.33 g/cm3, molecular weight 28.09 g/mol. nil e , h K g Ne N h 12 K g 0.9 10 T exp 3 (mole fractions) Eg kT Eg=1.14 eV, k=8.63∙10-5 eV/K 38 2. a) P, As, Sb 150 21 n nd 6 . 7 10 q 1.6 1019 0.14 1m 1 3 m Cm 2V 1s 1 2.33106 6.0231023 28 1 nSi 5 10 [ 3 ] 28.09 m nd 6.7 1021 5 100% 100 % 1 . 34 10 % 28 nSi nd 5 10 39 2. b) 12 K g 0.9 10 T exp 3 K g 0.9 10 12 298 3 exp Eg kT 1.14 24 1 . 34 10 8.63 10 5 298 1.341024 17 Nh 1 10 Ne 1.34107 Kg 40