PowerPoint プレゼンテーション

Download Report

Transcript PowerPoint プレゼンテーション

Aquaphotomics for
weak signals quantification in
water
Roumiana Tsenkova
Kobe University, Japan
[email protected]
生体計測工学研究室
Bio Measurement
Technology
Laboratory
http://nirslab.org/
Kobe University
Bio measurement Technology Laboratory, Kobe University, Japan
Dr. Jacques Benveniste
Understanding that the smallest
amount of a substance affects the
organism – ‘A person can enter a
room two days after a cat has left it
and still suffer an allergic response’.
Yolene Thomas, Larbi Kahhak and Jamal Aissa (2006) The physical nature of the biological signal, a puzzling
phenomenon: the critical contribution of Jacques Benveniste, In “Water and the Cell”, 325-340, Ed. Gerald
Polack, Springer.
“…electromagnetic transmission of biochemical
information can be stored in the electric dipole
moments of water in close analogy to the
manner in which magnetic moments store
information on a computer disk.”
•
A. Widom, Y.N. Srivastava, V. Valenzi The Biophysical Basis of Water Memory , http://jacquesbenveniste.org/bio_conf_widom.pdf
Vibrational Spectroscopy – IR, NIR
IR –Infrared spectroscopy
NIR – Near infrared spectroscopy (overtone IR)
IR active transition – electric dipole moment of molecule
changes
NIR overtone spectroscopy – can measure water in-vivo
WATER SPECTRUM
IR range
fundamental
frequencies
NIR range
overtone region
Bio measurement Technology Laboratory, Kobe University, Japan
AQUAPHOTOMICS: THE CONCEPT
AQUAPHOTOMICS:
WATER as a
MOLECULAR MIRROR
Perturbations
water
AQUA
PHOTOME
Spectral
Data Base
Bio・
Aqueous
System
NIR spectrum
WAMACS
The LETTERS
Activated Water
Absorbance Bands
Water Spectral Pattern
THE WORD
WAMACS = Water Matrix Coordinates, i.e. water absorbance bands in VIS-NIR range
Bio measurement Technology Laboratory, Kobe University, Japan
Prof. Rustum Roy
Water structures should be the LETTERS
and
water functionalities will be described as WORDS
AQUAPHOTOMICS
Perturbations
Experiments
Water
Sun
NIRS
UV―VIS―IR
Prof. Rustum Roy
Bio
Aqueous
System
Medical Science,
Pharmacy
.
Spectral Data Base
Engineering
GOAL
Multivariate Analysis
Data Analysis
bio-system
Activated Water
Absorbance Bands
HOLISTIC
MODELS
Database
AQUAPHOTOME:
・
Building
WAMACS:
through
Database of water
absorbance bands and
patterns
WAPS: Database of water
absorbance patterns
according to change
perturbation
・
analyzing
spectral
changes of
WATER
MOLECULAR
SYSTEM
Biotechnology
Basic Science
・ Analyzing of aqueous system
・ Interaction of water with DNA
・ Interaction of water with
organic and non-organic
molecules
・ Aqueous systems in cells
・ Aqueous systems in tissue
・ Aqueous systems in organs
・ Aqueous systems in whole
body
Applying in various fields
Bio measurement Technology Laboratory, Kobe University, Japan
SPECTRA and AQUGRAMS of WATER AND
VAPOR
1518nm
(V1, V2)
1344nm
(V3)
3.5
3
1364nm
(water shell)
2.5
1362
2
1382
1.5
1492nm
(S4)
1372nm
(V1+V3)
1
0.5
1452
0
1372
-0.5
Absorbance
MPA
VAPOR
WATER
-1
1474nm
(S3)
1382nm
(water shell)
-1.5
1464nm
(S2)
1300
1410
1490
Wavelength (nm)
1580
1680
1398nm
(free OH)
1444nm
(S1)
1410nm
(S0, free water)
1438nm
(H5O2)
A'

A



A : Absorbance after EMSC (1300-1600 nm)
μ:Mean of Averaged spectra
σ:SD of absorbance each wave length
Bio measurement Technology Laboratory, Kobe University, Japan
moisture
water
APPROACHING WATER with MONITORING
Following the idea of
QUANTUM SPECTROSCOPY
where
“matter is excited and probed with a
sequence of light pulses at defined
frequencies”
IN ORDER TO
“control and characterize quantum
dynamics of many-body states”1
1. http://en.wikipedia.org/wiki/Quantum-optical_spectroscopy
Measurement of NIR Spectra Under
Perturbations
NIR spectra of water and protein solutions measured every minute,
for the first 5 minutes and every 15 minutes, for 690 min, at 37oC
Instrument: (NIRSystem 6500, wavelength range from 400 to 2500 nm)
Cuvette cell is inserted in to the instrument holder and kept at 37oC
ILLUMINATION as a perturbation
1
VIS – NIR Light
... 5
6
1,2,3,4,5
20
7
35
45
...
[I, times]
690
TIME as a perturbation
MODELS DEVELOPED: Y = F [ I ], Y = F [ T ]
[T, min]
Temperature Changes
room temperature(℃)
Room temperature
26.6
26.4
26.2
26.0
25.8
25.6
25.4
25.2
25.0
experiment
1
2
3
0
5
10 15 20 25 30 35 40 45 50 55 60
time(minute)
Humidity Changes
Humidity
50.0
humidity(%)
40.0
experiment
1
2
3
30.0
20.0
10.0
0.0
0
5
10 15 20 25 30 35 40 45 50 55 60
time(minute)
Weight Changes
experiment
LOSS of Water
1st
2nd
3rd
before
10.9324
11.0326
10.9596
after
10.9088
10.9981
10.9302
0.0236
0.0345
0.0294
(g)
weight(g)
difference
11.08
11.04
11.00
10.96
10.92
10.88
10.84
1st exp =0.22%
2nd exp =0.31%
3rd exp =0.27%
difference
after
1
2
experiment
3
PCA SCORE PLOT
experiment
1st
2nd
3rd
Water Matrix Coordinates: WAMACSPCA,
EZ WAMACS, LOADINGS
1412
1364
1842
1490
1872
Factor1
Factor2
1482
1474
1530
934
1368
1490
1842
wavelength(nm)
Water Spectra
A
b
s
o
r
b
a
n
c
e
Wavelengths, nm
WATER DYNAMIC SPECTRA
2D and 3D Synchronous Correlation Maps
600- 2500 nm
represent negative correlation
represent positive correlation
WATER ABSORBANCE PATTERNS, WAPs
(dynamic study)
Power Spectra at 1530nm
Loading of the first PC over the 600 – 850nm region
1.15
670nm
1.1
694nm
724nm
1.05
774nm
792nm
806nm
1
1.2
0.95
00
1
00
4
03
5
08
0
12
5
17
0
21
5
26
0
32
0
1.15
626nm
Time, min
644nm
1.1
various wavelengths
772nm
810nm
1
Time, min
320
260
215
170
125
0.95
080
at
1.05
035
NIR water absorbance
722nm
004
of
654nm
001
Real time monitoring
a.u.
a.u.
684nm
Spectral Differences in Waters
1日目
2日目
3日目
4日目
吸光度(Log1/T)
1446nm
5日目
6日目
972nm
1192nm
波長(nm)
Magnetic VivoWater miliQWater
Blue: miliQ; Green:magnetic; Red: Vivo water
MSC, Baseline correction: miliQ second measurement subtracted+ smooth 13nm
Measurement of Very Low
Concentration of Progesterone
Samples
1
2
3
4
5
6
7
8
9
10
Pregnanediol
glucuronide
PdG (ng/ml)
100
50
25
12.5
6.25
3.13
1.56
0.781
0.391
0.195
Each of samples is measured 10 consecutive spectra.
Absorbance
Raw spectra
400
700
1100
Wavelength (nm)
1880
2500
Absorbance
2nd derivative spectra
25ng/ml
50ng/ml
100ng/ml
2262 nm
Wavelength (nm)
Correlation absorbance at 2262 nm with concentration of PdG standard
0.96
Absorbance at 2262 nm
R² = 0.7195
0.955
Exclude
0.95
0.945
0.94
10 samples
100 spectra
0.935
0
20
40
60
concentration of PdG (ng/ml)
80
100
Correlation absorbance at 2262 nm with concentration of PdG standard
8 samples
80 spectra
Predicted concentration (PdG ng/ml)
PLSR for PdG
(the water region 1300 - 1600 nm)
Preprocessing : mean-center
Transformation: smooth
R=0.999
SEC=1.42
10 samples
100 spectra
Actual concentration (PdG ng/ml)
Regression vector in the first overtone of water
1528
1366
1334
1580
1432
1410
1470
EMS from DNA Solutions Measurement
Data set for analysis
15 sample data sets (EMS from DNA, Imprinted EMS, and Water)
DNA
•Patient HIV+
•HIV LTR 104bp
•HIV LTR 137bp (1st Day)
•HIV LTR 137bp (2nd Day)
•HIV LTR 194bp
•HIV LTR 300bp
•E. Coli (1st Day)
•E. Coli (2nd Day)
•Borrelia
Water
•Distilled Water (DW)
•MilliQ
•Kobe
Imprinted EMS
•HIV LTR 104bp
•Borrelia
•Distilled Water (DW)
Spectral data of each sample are divided into two groups depending on
amplitudes of electromagnetic signal (EMS).
1) Higher ES・・・higher or normal EMS, 2) Lower ES・・・lower EMS
34
Prediction of EMS by PLS
Predicted EMS (dB / Hz)
(Higher ES Samples)
Factor: 16
R: 0.90
SEV: 53 dB / Hz
Higher ES
Lower ES
Measured EMS (dB / Hz)
•Mean-center
•Smooth[25]
•1st, 2nd, and 3rd
•Step 3
Sample
ES
DNA-HIV-Patient
2
DNA-HIV-104bp
2
DNA-HIV-137bp (1st)
2
DNA-HIV-137bp (2nd)
2
DNA-HIV-194bp
2
DNA-HIV-300bp
1
DNA-E.Coli (1st)
2
DNA-E.Coli (2nd)
2
DNA-Borr
2
Water-DW
1
Water-MilliQ
1
Water-Kobe
1
Wave-HIV-104bp
2
Wave-Borr
1
Wave-DW
1
Cross Check
1
LB
1
35
Prediction of EMS by PLS (Higher ES Samples)
Regression Vector, WAMACS
Regression coefficient (10^5)
1870
964
618
728
658
674
776
790
900
838
1392 1458 1526
1084
1030
1248
1296
1184
1814
1638
1588
1274
1616
1326
636
1208
808 930
1560
1364
1056 1136
1376
1114
754
1422
872
998
1486
702
1124
1760
1858
Wavelength (nm)
•Mean-center
•Smooth[25]
•1st, 2nd, and 3rd
•Step 3
Sample
ES
DNA-HIV-Patient
2
DNA-HIV-104bp
2
DNA-HIV-137bp (1st)
2
DNA-HIV-137bp (2nd)
2
DNA-HIV-194bp
2
DNA-HIV-300bp
1
DNA-E.Coli (1st)
2
DNA-E.Coli (2nd)
2
DNA-Borr
2
Water-DW
1
Water-MilliQ
1
Water-Kobe
1
Wave-HIV-104bp
2
Wave-Borr
1
Wave-DW
1
Cross Check
1
LB
1
36
Predicted EMS (dB / Hz)
Prediction of EMS by PLS (Lower ES Samples)
Factor: 9
R: 0.89
SEV: 40 dB / Hz
Higher ES
Lower ES
Measured EMS (dB / Hz)
•Mean-center
•Smooth[25]
•1st, 2nd, and 3rd
•Step 3
Sample
ES
DNA-HIV-Patient
2
DNA-HIV-104bp
2
DNA-HIV-137bp (1st)
2
DNA-HIV-137bp (2nd)
2
DNA-HIV-194bp
2
DNA-HIV-300bp
1
DNA-E.Coli (1st)
2
DNA-E.Coli (2nd)
2
DNA-Borr
2
Water-DW
1
Water-MilliQ
1
Water-Kobe
1
Wave-HIV-104bp
2
Wave-Borr
1
Wave-DW
1
Cross Check
1
LB
1
37
Prediction of EMS by PLS (Lower ES Samples)
Regression Vector
Regression coefficient (10^4)
1884
606
776
1376
1442
1526
1004 1148
1052
814
884
928 1040
844
944
1084
900
792
1646
1344
1482
1408
746
1702
1744 1846
1668
1788
1566
1872
Wavelength (nm)
•Mean-center
•Smooth[25]
•1st, 2nd, and 3rd
•Step 3
Sample
ES
DNA-HIV-Patient
2
DNA-HIV-104bp
2
DNA-HIV-137bp (1st)
2
DNA-HIV-137bp (2nd)
2
DNA-HIV-194bp
2
DNA-HIV-300bp
1
DNA-E.Coli (1st)
2
DNA-E.Coli (2nd)
2
DNA-Borr
2
Water-DW
1
Water-MilliQ
1
Water-Kobe
1
Wave-HIV-104bp
2
Wave-Borr
1
Wave-DW
1
Cross Check
1
LB
1
38
E.Coli DNA
2012 Experiment in Kobe
Water for DNA dilution
measurement
Filter 1 (450nm)
measurement
Filter 2 (100nm)
1/10×1/10 ×1/10×1/10×1/10
×1/10×1/10 ×1/10×1/10 ×1/10×1/10
10 stage
40
NIR Spectroscopy
•
•
•
•
•
Sample : E.coli DNA
Spectrometer : NIRSystems 6500
Temperature : room temperature
Consective spectra : 3 times
Date : 2011/06/23 (Exp. 1)
2011/06/25 (Exp. 2)
41
Results
D2NF
D2F450NM
D2F450+100 or 20nm
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
Exp. 1
1042
1042
1060
1125
1107
1004
990
760
765
709
671
1188
1170
1596
1589
1480
Exp. 2
801
801
832
855
829
798
768
809
575
635
610
584
865
801
807
809
Exp. 1
ES : D7~D10
Exp. 2
ES : D8~D11
ES : Electromagnatic signal
42
Raw spectra
Exp. 2
Absorbance (-)
Absorbance (-)
Exp. 1
Wavelength (nm)
Wavelength (nm)
EMSignal (ES)
No Signal (NS)
43
Raw spectra
Exp. 1
Exp. 2
Absorbance (-)
Absorbance (-)
EMS NS
Wavelength (nm)
Absorbance (-)
Absorbance (-)
Wavelength (nm)
Wavelength (nm)
Wavelength (nm)
44
Different spectra (-Non-Filtered sample)
EMS NS
Exp. 2 934 1068
750 770
778 832 916
1046
Exp. 1
936
910
Absorbance (-)
770
736
748
1382 1406
1362
1488
Absorbance (-)
Absorbance (-)
1416
1384
1460
1362
1490
Wavelength (nm)
1410
Wavelength (nm)
45
Signal calibration with PLS
Middle range
Short range
Exp. 1
Exp. 2
Factor = 7
R2 = 0.68
SEV = 175.7
Factor = 5
R2 = 0.53
SEV = 66.2
Factor = 8
R2 = 0.61
SEV = 198.2
Factor = 8
R2 = 0.67
SEV = 59.4
Transform : Smooth (9)
averaged spectra (1st – 3rd )
46
Signal prediction with PLS: WAMACS
Model : Exp. 1
Factor = 5
R2 = 0.69
SEV = 188.4
1452
40000
regression vector (-)
Test : Exp. 2
R2 = 0.61
SEP = 250.3
1436
60000
1382
20000
0
1360
1560
-20000
1552
1622
1652
-40000
1404
1410
-60000
1200
1300
1400
1500
1600
1700
1800
wavelength (nm)
Model : averaged spectra (1st – 3rd )
Test : averaged spectra (1st – 3rd )
Transform : Smooth (9)
47
E.Coli All Signal DATA Assignment
(2012)
D2NF
D2F450NM
D2F450+100 or 20nm
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
Exp. 1
1042
1042
1060
1125
1107
1004
990
760
765
709
671
1188
1170
1596
1589
1480
Exp. 2
801
801
832
855
829
798
768
809
575
635
610
584
865
801
807
809
1336nm (aqueous proton [H+·(H2O)6] - H2O
asymmetric stretch, 1st overt.), 1358nm (H17O8+
free OH stech, 1st overt.), 1374-78nm(aqueous
proton [H+·(H2O)3] - H3O+ symmetric stretch, ),
1398nm 1421-28nm, 1460nm, 1482nm, 1678nm,
1742nm(1st overtone Superoxide Tetrahydrate O2.(H2O)2 ), 1792nm (1st overtone Superoxide
Tetrahydrate O2-.(H2O)3)
E.Coli All Signal DATA Assignment
(2013)
E.Coli EMS Aquagram Exp. 1
A’λ=
Aλ - μ
σ
D2NF
D2F450 nm
D2F450+100 or 20 nm
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
A : Absorbance after MSC (1110 nm – 1800 nm)
μ: Mean of all the spectra (with NF, F1)
σ: SD of absorbance each wavelength
Exp. 1
1042
1042
1060
1125
1107
1004
990
760
765
709
671
1188
1170
1596
1589
1480
1344
2.5
1518
1364
1.5
0.5
1492
1372
-0.5
-1.5
1474
1382
-2.5
1464
1398
1444
1410
1438
50
Lowest Signal
1344
2.5
1518
1364
1.5
0.5
1492
1372
-0.5
-1.5
1474
1382
-2.5
1464
1398
1444
1410
1438
51
1344
2.5
1518
1364
1.5
0.5
1492
1372
-0.5
-1.5
1474
1382
-2.5
1464
1398
1444
1410
1438
52
1344
2.5
1518
1364
1.5
0.5
1492
1372
-0.5
-1.5
1474
1382
-2.5
1464
1398
1444
1410
1438
53
Highest Signal
1344
2.5
1518
1364
1.5
0.5
1492
1372
-0.5
-1.5
1474
1382
-2.5
1464
1398
1444
1410
1438
54
2013 Experiment in Paris
•
•
•
•
•
Sample : E.coli DNA
Spectrometer : XDS Methrom
Temperature : room temperature
Consective spectra : 3 times
Date : 2013/06
55
E.Coli All Signal DATA Assignment
(2013)
Less hydrogen
bonded
structures
activated with
high EMS
Contactless Influence
Samples
1) LB (LB medium)
2) LB+A (LB medium + Ampicillin)
How to prepare samples
We prepared 6 sample sets (see next slide) as the following.
1) Put LB or LB+A into small or big tubes 2) After closing the lids of a small
tube, set a small tube in a big one.
(polypropylene, BD Falcon)
Then, close the lids of half big
LB LB+A
tubes and keep others open.
e.g. Open-top Closed
LB
LB+A
Small tube (15 mL)
Input: 10 mL
Big tube (50 mL)
Input: 35 mL
Sample Preparation - 2
Open-top
Sample
Name
・・・LB
・・・LB+A
In: A_IL_OA_I
Out: A_IL_OA_O
In: A_IA_OA_I
Out: A_IA_OA_O
In: A_IL_OL_I
Out: A_IL_OL_O
Control
Closed
Sample In: C_IL_OA_I
Name Out: C_IL_OA_O
Cont_LB Cont_LBA
In: C_IA_OA_I
Out: C_IA_OA_O
In: C_IL_OL_I
Out: C_IL_OL_O
Measurement of Near-infrared spectrum
Near-infrared spectrum of each sample was measured using
NIRSystems 6500
•Spectroscopy: NIRSystems 6500 (FOSS NIRSystems)
•Wavelength: 400-2500 nm
•Methods: Transmittance
•Path length: 1 mm
•Temperature: Room temperature
•Consecutive measurement times: 3 times per a sample
1) Moving a sample into a cuvette cell
2) Measuring a spectrum
NIRSystems 6500
Green: with lid
Red: no lid
LB
LB: inside
and
outside
LB + A
LB + A and LB in LB+A
LB: inside
LBA: outside
LB: measured
LB: inside
LBA: outside
LBA: measured
LBA influence is stronger
LB: inside LBA:
outside
LB: measured
LB: inside
and
outside
Difference in WAMACS
Loadings of PC Factors 1-red,2-green,3-blue
Close Top C WAMACS:
1410nm, So
1462nm, S2
1362nm
1398nm
solvation
solvation
shell
shell
1420nm
hydration
Open Top A WAMACS:
1362, 1398, 1410, 1420, 1462, 1490,
1538nm
1412nm, So
1486nm
1366nm
solvation 1368,
shell
1386nm
1428nm
hydration
Investigation of water structural
changes
induced by cellular phone irradiation
63
Sample preparation
Location of samples
Distilled water
10 mL at each sample
1
Call
Milli-Q water
2
Receive
Duration of call
・0 minute
・5 minutes
・10 minutes
・15 minutes
・20 minutes
7/18/2015
Biomeasurement technology laboratory
64
Spectral measurement
•
•
•
•
•
Spectrometer: NIRSystems6500(Foss NIRSystems)
Mode: Transmittance
Path length: 1mm
Temperature: Room temperature
Consecutive times: 3 times
Materials
・Cellular phone (PT002, KDDI, 800MHz)
・Milli-Q water
・Distilled water
7/18/2015
Biomeasurement technology laboratory
65
PCA score plot
Wavelength range : 680-1090 nm + 1110-1800 nm
Transform : SNV
66
SIMCA
Interclass distance
CS1@8 CS2@6
CS1
0.000000 6.163845
CS2
6.163845 0.000000
67
Middle NIR wavelength range
1110-1800nm
Discrimination of irradiated water
and non irradiated with PCA
Absorbance (-)
1452nm
1.2
・Score plots: discrimination
↓
・Loading spectra: investigation of
0
1110nm
1800nm
Wavelength (nm)
7/18/2015
wavelengths which contribute the
discrimination
Biomeasurement technology laboratory
68
Factor2 (-) [33.00%]
PCA
Score Plots
20 minutes
15 minutes
10 minutes
5 minutes
0 minute
◆: 0 minute
◆: 5 minutes
◆: 10 minutes
◆: 15 minutes
◆: 20 minutes
Factor 3(-) [0.37%]
Factor1(-) [66.60%]
7/18/2015
Factor 2 showed the
duration of call.
Factor3 (-) [0.37%]
Factor1(-) [66.60%]
Optimal factors: 10
Preprocessing: mean center
Transforms: smooth(17)
Validation: cross(1)
Biomeasurement technology laboratory
Factor2(-) [33.00%]
69
Loading spectra: WAMACS
③
⑤
⑧
Loadings (-)
0.1
⑥
―: Factor1
―: Factor2
―: Factor3
―: Factor4
0
⑦
④
⑨
-0.1
①
②
1110nm
Number
Wavelength
①
1364nm
②
1386nm
③
1412nm
④
1414nm
⑤
1426nm
⑥
1430nm
⑦
1490nm
⑧
1492nm
⑨
1508nm
1800nm
Wavelength (nm)
7/18/2015
Optimal factors: 10
Preprocessing: mean center
Transforms: smooth(17)
Validation: cross(1)
Biomeasurement technology laboratory
70
Classification Model: SIMCA
Misclassifications
Model
Pred. 1
Pred. 2
Pred. 3
Pred.4
Pred.5
No match
Actual 1
16
0
0
0
0
0
Actual 2
1
15
0
0
0
0
Actual 3
0
0
16
0
0
0
Actual 4
0
0
0
16
0
0
Actual 5
0
0
0
0
16
0
Preprocessing: mean center
Transforms: smooth(17)
Class Variable: duration
Optimal factors (duration):
5 (0 minute)
4 (5 minutes)
5 (10 minutes)
5 (15 minutes)
4 (20 minutes)
Accuracy
99.0%
Test
Pred. 1
Pred. 2
Pred. 3
Pred.4
Pred.5
No match
Actual 1
8
0
0
0
0
0
Actual 2
1
7
0
0
0
0
Actual 3
0
0
8
0
0
98.75%
98.5%
0
97.5%
Actual 4
0
0
0
8
0
0
Actual 5
0
0
0
0
8
0
7/18/2015
Biomeasurement technology laboratory
Model
98.0%
Test
97.50%
97.0%
71
SIMCA
Interclass distance
0 minute
0 minute
5 minutes
10 minutes
15 minutes
20 minutes
5 minutes
10 minutes
15 minutes
1.39
4.10
7.52
2.50
12.06
7.55
Preprocessing: mean center
Transforms: smooth(17)
Class Variable: duration
Optimal factors (duration):
5 (0 minute)
20 minutes
4 (5 minutes)
9.79
5 (10 minutes)
5 (15 minutes)
10.94
4 (20 minutes)
7.24
2.61
: Over 3.00
SIMCA
Discriminating power: WAMACS
Discriminating power (-)
⑧
⑦
⑨ ⑩
⑰ ⑲
⑭
⑪
⑫⑬ ⑯
⑳
⑮
⑱
③
①
⑤ ⑥
1110nm
1800nm
②
④
Wavelength (nm)
Number
Wavelength
⑤
1228nm
⑩
1482nm
①
1136nm
⑥
1270nm
⑪
1544nm
②
1174nm
⑦
1366nm
⑫
1556, 1562, 1568nm
③
1190nm
⑧
1424nm
⑬
1598nm
④
1200nm
⑨
1468nm
⑭
1622nm
7/18/2015
Biomeasurement technology laboratory
⑮
1642nm
⑯
1674nm
⑰
1704nm
⑱
1732nm
⑲
1756nm
⑳
1796nm
73
Investigate whether duration of
irradiation or measurement order
influenced spectra.
Sample preparation
・A cell phone called the opposite one near some kinds of waters in test tubes.
・Cellular phone
PT002, KDDI, 800MHz
(another one is the same one)
5 kinds water (Milli-Q water,
distilled water, gold water,
silver water, and bronze
water)
×
4 kinds of duration of call
(5,10,15,20min)
×
2 (Irradiated or no)
×
2 locations
=80 samples
receive
call
1
2
Two locations, 1 & 2.
Spectra measurement
Spectrometer : MPA
Mode : Taransmittance
Consecutive times : 3 times
Path length : 1mm
Temperature : room temperatrure
Wavelength range : 800-2500nm
Absorbance(-)
Raw spectra
800
1100
Wavelength (nm)
1800
2500
PCA Score plots (irradiation)
Factor2 loadings
factor2
Consecutive No 1
1412
Consecutive No 2
Consecutive No 3
factor5
factor4
factor3
1489
factor1
factor2
factor3
factor4
→factor2 shows temperature influenced by consecutive measurement
PCA Score plots: waters
factor2
bronze
Milli-Q
distilled
factor5
factor4
factor3
gold
silver
factor1
factor2
factor3
factor4
PLS: Milli-Q water Model accuracy
SEC=0.00080
R=1.00
Measured order (-)
Duration of irradiation
Predicted duration (-)
Predicted order (-)
Measurement order
SEC=0.013
R=1.00
Measured duration (-)
Preprocessing : Mean-center
Smooth(21)
PLS: Milli-Q water Accuracy of
prediction
SEP=0.26
R=0.97
Measured order (-)
Duration of irradiation
Predicted order (-)
Predicted order (-)
Measurement order
SEP=5.00
R=0.79
Measured order (-)
PLS: Distilled water Model accuracy
SEC=0.0010
R=1.00
Measured order (-)
Duration of irradiation
Predicted duration (-)
Predicted order (-)
Measurement order
SEC=0.020
R=1.00
Measured duration (-)
Preprocessing : Mean-center
Smooth(21)
PLS: Distilled water Accuracy of
prediction
SEP=0.34
R=0.96
Measured order (-)
Duration of irradiation
Predicted order (-)
Predicted order (-)
Measurement order
SEP=5.67
R=0.69
Measured order (-)
PLS: bronze water Model accuracy
SEC=0.0013
R=1.00
Measured order (-)
Duration of irradiation
Predicted duration (-)
Predicted order (-)
Measurement order
SEC=0.013
R=1.00
Measured duration (-)
Preprocessing : Mean-center
Smooth(21)
PLS: Bronze water Accuracy of
prediction
SEP=0.42
R=0.93
Measured order (-)
Duration of irradiation
Predicted order (-)
Predicted order (-)
Measurement order
SEP=7.69
R=0.42
Measured order (-)
PLS: Silver water Model accuracy
SEC=0.0007
R=1.00
Measured order (-)
Duration of irradiation
Predicted duration (-)
Predicted order (-)
Measurement order
SEC=0.10
R=1.00
Measured duration (-)
Preprocessing : Mean-center
Smooth(21)
PLS: Silver water Accuracy of
prediction
SEP=0.25
R=0.98
Measured order (-)
Duration of irradiation
Predicted order (-)
Predicted order (-)
Measurement order
SEP=6.10
R=0.67
Measured order (-)
PLS: Gold water Model accuracy
SEC=0.0010
R=1.00
Measured order (-)
Duration of irradiation
Predicted duration (-)
Predicted order (-)
Measurement order
SEC=0.015
R=1.00
Measured duration (-)
Preprocessing : Mean-center
Smooth(21)
PLS: Gold water Accuracy of prediction
SEP=0.40
R=0.95
Measured order (-)
Duration of irradiation
Predicted order (-)
Predicted order (-)
Measurement order
SEP=7.56
R=0.61
Measured order (-)
PLS Regression Results
Milli-Q
distilled
bronze
silver
gold
measurement order
model
test
SEC
R
SEP
R
0.00080
1.00
0.26
0.0010
1.00
0.34
0.0013
1.00
0.42
0.00070
1.00
0.25
0.001
1.00
0.4
duration of irrudiation
model
test
SEC
R
SEP
R
0.97
0.013
1.00
5
0.96
0.02
1.00
5.67
0.93
0.013
1.00
7.69
0.98
0.1
1.00
6.1
0.95
0.015
1.00
7.56
・All models showed high accuracy
・Measurement order tests showed high accuracy, but duration of
irradiation time tests showed very low accuracy.
0.79
0.69
0.42
0.67
0.61
SIMCA : Model misclassification
Duration of irradiation
actual
actual
actual
actual
actual
5min
10min
15min
20min
0min
predicted 5min predicted 10min predicted 15min predicted 20min predicted 0min No match
20
0
0
0
0
0
0
20
0
0
0
0
0
0
20
0
0
0
0
0
0
20
0
0
0
1
3
0
76
0
Measurement order
predicted 1(5min)
predicted 2(15min)predicted 3(10min)predicted 4(20min)No match
actual 1(5min)
40
0
0
0
actual 2(15min)
0
40
0
0
actual 3(10min)
0
0
40
0
actual 4(20min)
0
0
0
40
Preprocessing : Mean-center
0
0
0
0
SIMCA : Test misclassification
Duration of irradiation
actual 5min
actual 10min
actual 15min
actual 20min
actual 0min
Unmodeled
predicted 5min predicted 10min predicted 15min predicted 20min predicted 0min No match
3
0
0
0
7
0
0
6
0
0
4
0
0
0
4
0
6
0
0
0
0
3
7
0
1
2
0
1
36
0
0
0
0
0
0
0
Measurement order
PredCS1@5
1(5min)
2(15min)
3(10min)
4(20min)
Unmodeled
PredCS2@5
20
0
0
0
0
PredCS3@5
0
20
0
0
0
PredCS4@6
0
0
20
0
0
No match
0
0
0
20
0
0
0
0
0
0
Classification: SIMCA
• Both of two patterns of model sets showed
high accuracy.
• Interclass distance of duration of irradiation
model set showed high values, but they
showed very low accuracy in prediction.
• Measurement order prediction showed 100%
accuracy.
• The effect of cell phone could be controlled by
the water
NAFION AND EZ
Naphion
Water
WAMACS:
1378nm, 1388, 1394,
1404 – 1414nm(-),
1438-1440nm(+), 1454nm(+), 1464nm(+),
1480nm(+), 1496nm last sharp max
Blue: Water : consecutive spectra (first
subtracted)
WAMACS:
1386nm (+) first max
1414nm (-)
1446 -1448nm second max
1464min
1474 – 1480nm max
ONLY Naphion: 3 consecutive measurements,
1st one subtracted
WAMACS:
1324nm (-), 1340nm (+), 1420nm (+),
1444nm (+)?, 1458nm(+), 1498nm (-),
1520nm, 1526nm (+), 1538 – 1558nm (+)
These are water molecules in the air
Effect of magnetic force on
the electrical conductivity
and spectra of milliQ water
Materials and methods
• mQ water used
• Electrical conductivity was
measured in a 20 mm cuvette
(by a portable conductometer)
• Magnets attached at the two
sides of the cuvette during the
experiment
Place of
the
magnets
NS
NS
Orientation of the magnets
Two neodymium magnets (rare-earth magnet) were used using the following orientations:
NS
2mm
sample cell
NS
NS
2mm
sample cell
4. N-N
northnorth
magnetic
poles
2mm
sample cell
NS
3. S-S
southsouth
magnetic
poles
NS
2. N-S
northsouth
magnetic
poles
NS
1. S-N
southnorth
magnetic
poles
NS
•
2mm
sample cell
NS
RESULTS
S
S
N
N
Red line are 9 consecutive spectra of mQ water
(second consecutive subtracted).
S-N blue, N-S dark green, S-S brown, NN light
green
1432nm O–H…R,, ncII) and DDA OH-(H2O)4,
1448 – 1458nm, O-H…Cl, deionized water, 1stover tone of O-H
stretch, DDA symmetric stretch of OH-(H2O)4,5,
1492nm,second overtone of bending and symmetric str vibr., S4.
Very small increase in 1464nm, S2, “working horses” and
1518nm.; 1667nm – 1682nm O-H…R, H13O6+ H-bonded OH
strech, 1st overt.
Decrease in S1, 1441nm!!!Dicrease in H-bonded OH
stretch1477nm; 1479.3nm,
1482nm, IHB/HOH bend (OH-H2O) and H5O2 (terminal water)
at. Decrease of aqueous protons.
Isosbestic point moves from 1438nm to 1420nm.
N-N
1st experiment (in every 40s)
S-N
No magnet
N-S
4.
S-S
5.
3.
2.
1.
3.
2nd experiment 1st part
(continuous)
4.
5.
1.
2.
number of data
conductivity, µS/cm (2nd measurement)
conductivity, µS/cm (1st measurement)
Measurement
order
Legend
S-S pink
N-N blue
S-N red
N-S green
mQ
brown
AQUAPHOTOME DATA BASE
Systems
Perturbations
Wavelengths, LETTERS
Spectral Patterns, WORDS
Waters:
Temperature
first overtone
stress tolerance
Pressure
second overtone
disease
Illumination
third overtone
probiotics
Concentration
combination bands
dehydration
Magnetic field
solvation shells
hydration
Functiona
lities
mQ, distilled, deionised, mineral, treated etc.
Water solutions:
DNA
biomolecules: proteins, sugars, lipids, alcohols etc.
minerals, salts, metals etc.
Bio fluids
blood, urine, serum, rumen juice etc.
Cells
CHO, bacteria
Tissue: (in vitro and in vivo)
organs: liver, kidney, stomack etc.
mammary gland, mussels, plants tissue, etc.
Dillution
oxidation
Water Bands (WAMACS) –
ASSIGNMENT – SOURCE
1368.7
1368.7
1369.5
1369.5
1369.5
1369.9
1370.5
1370.6
1371.0
1371
1371.4
1372.1
1374.0
1375.9
1377.4
1379
1379.3
1380
1380.85
1383
1383.15
1388.7
1388.9
1388.9
1389
1394.7
1394.75
1396.6
1398.141
1399
1407.3
1st overtone OH-str (OH-H2O)
H15O7+, 1st overt.
H17O8+, 1st overt.
H15O7+ free OH stech, 1st overt.
H17O8+ free OH stech, 1st overt.
aqueous proton [H+·(H2O)6] - H2O symmetric stretch, 1st overt.
1st overtone (OH-(H2O)5)
H13O6+ free OH stech, 1st overt.
aqueous proton [H+·(H2O)5] - H2O symmetric stretch, 1st overt.
1st overtone Superoxide Tetrahydrate O2-.(H2O)4
H11O5+ free OH stech, 1st overt.
aqueous proton [H+·(H2O)4] - H2O symmetric stretch, 1st overt.
aqueous proton [H+·(H2O)3] - H2O symmetric stretch, 1st overt.
H9O4+ free OH stech, 1st overt.
aqueous proton [H+·(H2O)3] - H3O+ symmetric stretch, 2nd overt.
n1+n3
H2O - n1+n3
1st overtone OH-str (OH-H2O)
1st overtone (OH-(H2O)5)
1st overtone Superoxide Tetrahydrate O2-.(H2O)4
1st overtone interwater / DD stretch (OH-(H2O)4)
H2O - 2*n1
H+(H2O)10, 1st overt.
H bond 18=<n=<24, 1st overt.
O-H str
1st overtone H2O (1%) - n1
1st overtone H2O (1%) - n2
aqueous proton [H+·(H2O)3] - H3O+ free-OH stretch, 1st overt.
free water
H5O2 asymmetric
H15O7+ H-bonded OH strech, 1st overt.
Science28
Wei and Salahub 1997: The Journal of Chemical Physics, 106: 6086.
Wei and Salahub 1997: The Journal of Chemical Physics, 106: 6086.
Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.
Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Science28
Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Weber, Science 2000
Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Tsenkova
Ozaki 1982
Xantheas, 1995
Science28
Weber, Science 2000
Science28
Ozaki 1982
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Shin et al. (Mark Johnson) 2004: Science, 304: 1137.
Tsenkova
Ozaki 1982
Ozaki 1982
Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.
Tsenkova
Tsenkova
Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.
Conclusion
• Water Matrix Coordinates are the Letters or
the Characters related to water structures
• Water Spectral Patterns are the words that
“speak” about functionalities
• Huge data base, i.e. Aquaphotome
has to be organized in order to
“learn” the language of water and
to measure and understand weak signals