Immersed Finite Element Solution to the Field Problem

Download Report

Transcript Immersed Finite Element Solution to the Field Problem

Progress Report:

Hybrid Simulation of Ion-Cyclotron Turbulence Induced by Artificial Plasma Cloud in the Magnetosphere

W. Scales, J. Wang, C. Chang Center for Space Science and Engineering Research Virginia Tech

Outline

I. Introduction

II. Hybrid PIC Simulation Model

III. Simulation Results

IV. Summary and Conclusion

I. Introduction

Objective:

To study the process and efficiency of energy extraction from a chemical release that may produce plasma turbulence which ultimately interacts with radiation belt electrons

Overview of Progress:

Developed and implemented a new EM hybrid PIC algorithm which incorporates finite electron mass

Developing a new ES hybrid PIC algorithm which incorporates finite electron mass

Simulated plasma turbulence generated by the injection of a velocity ring distribution of Li ions

Simulation results show that the excitation of Lithium cyclotron harmonics which extracts about ~20% to ~15% of the Lithium ring energy (for n Li /n H ~5% to 20% injection)

II. EM Hybrid PIC Simulation Model

• •

Basic Assumption:

– –

Quasi-neutral plasma; particle ions; fluid electrons; displacement current ignored Governing Equations:

Fields:

Fluid Electrons:

Particle Ions

Electric field equation incorporating finite-mass electron mass

c

2 4     2 

E

    (   

E

)  ( 

v e

    )(   

B

) /

c

   

e

v e where dn e dt d dt

 

dt

d

t

 

i q i n i

v i

( 

v e

   ) 

e cm e

  ( 

i q i n i

v i e

2

n e m e

 

B

)  

E c

4   (   

B

)  

B

  

c

4 

e

2

n e

  (   

B

),

m e

Ignoring the velocity convection term:

c

2 4     2 

E

   

e v e

n e

t

(   

E

)  

e

2

n e m e

 

i q i n i

 

v i

t

e cm e

E

  ( 

i q i n i

v i

 

B

) 

c

4  (   

B

)  

B

  

c

4 

e

2

n e

 (   

B

)

m e

Initial goal is to study process proposed by

Ganguli et al.

2007

III. Simulation Results

Simulation Initialization:

Injected Lithium ion: ring velocity distribution

v

  2 2

v

max  ( 1   2 )

v

min

v max =7km/s, the orbit velocity at the ejection ring energy=1.75eV

ambient hydrogen ion and electrons: Maxwellian distribution T=0.3eV

Simulation Cases: n Li /n H =0%, 5%, 10%, 20%

Simulation domain

– – – –

2-D, Z is parallel to Bo , X is perpendicular to Bo Zmax=182.42 km, 100 cells in the domain Xmax=0.58 km, 50 cells in the domain The Lithium Larmor radius=0.126 km. Xmax~ 4.6 times Larmor radius (11 cells for one Larmor radius)

X

(  )   

Z

(||)

Y

n Li /n H =0% Time History of Field Energy n Li /n H =5% n Li /n H =10% n Li /n H =20% Saturation occurs after ~2.5*(2 π/ linear growth rate)

Linear Growth Rate n Li /n H =5%

-15.5

-16.0

-16.5

-17.0

-17.5

-18.0

-18.5

-19.0

0 50 100 ln( δ B 2 Linear /B 2 o Fit ) -24.0

Y = -20.59415 + 0.03173 * X -24.5

-25.0

-25.5

-26.0

-26.5

-27.0

150 Ω H t 200 250 Growth Rate γ/Ω H n Li /n H =5% n Li /n H =10% n Li /n H =20% 0.01554

0.02202

0.03333

50 100 ln( δ E 2 Linear /B 2 o Fit ) Y = -28.86699+ 0.03042 * X 150 Ω H t 200 250

Frequency Spectrum Analysis: n Li /n H =5%:

Near Saturation (Ω H t  80 ~ 161) After Satuaratio n (Ω H t  260 ~ 341) l(Ω Li ) l(Ω Li ) l(Ω Li ) l(Ω Li ) l(Ω Li ) l(Ω Li )

Near Saturation E  , k (Ω H t  160)

k Spectrum Analysis: n Li /n H =5%

B  , k (Ω H t  160) B || , k (Ω H t  160) k z c/ω pH After Satuaratio n E  , k (Ω H t  3 20 ) k z c/ω pH B  , k (Ω H t  260) After Satuaratio n (Ω H t  260 ~ 341) k z c/ω pH B || , k (Ω H t  260) k z c/ω pH k z c/ω pH k z c/ω pH

Lithium ion ring velocity phase: n Li /n H =5%

Ω H t  0 Ω H t  100 Ω H t  150

v x

/

v tH

Ω H t  200

v x

/

v tH

Ω H t  250

v x

/

v tH

Ω H t  400

v x

/

v tH v x

/

v tH v x

/

v tH

Lithium & Hydrogen ion velocity distribution: n Li /n H =5% Li+ H+

1 0.8

0.6

0.4

0.2

0 0 0.5

1 1.5

v

 /

v tH

2 0.1

 H t=0  H t=100  H t=250  H t=400 0.08

0.06

0.04

0.02

2.5

3 Ω H t Ω H t   0 150 Ω H t Ω H t   250 400 0 -3 -2 -1 0

v x

/

v tH

1 2 3

Li+ KE change Energy Extraction Efficiency H+ KE change Energy Extraction Efficiency=1-(Li+ kinetic energy)/(Li+ initial kinetic energy)

Energy efficiency n Li /n H =5% 18% n Li /n H =10% 15% n Li /n H =20% 13%

V. Summary and Future Plans

Significant progresses have been made in developing a simulation model of ion cyclotron turbulence generated by a velocity ring distribution

Initial simulation predictions of energy extraction efficiency are consistent with predictions from previous work (Mikhailovskii et al., 1989)

Model may be used to study a variety of velocity ring EM instability mechanisms from various chemical releases (Li, Ba, ect.)

Future work

Refine the current electromagnetic EM hybrid PIC code for more direct comparisons of the NRL mechanism

Complete the implementation of a electrostatic ES hybrid PIC model with electron inertia for studying energy extraction associated with lower hybrid turbulence from chemical release (both Ba and Li).

2E-06

Historical Plot of Magnetic Field

B || B x B y 1E-06 0 -1E-06 -2E-06 0 50 100  H t 150 200

Historical Plot of Electric Field

4E-08 2E-08 0 -2E-08 -4E-08 0 50 100  H t 150 200 E || E x E y

Fields: Particles: Where:

Normalized Governing Equations

Numerical Implementation: Predictor Corrector Scheme Leapfrog Particle Push; PCG Electric Field Solver

The basic procedure are in four steps: