Transcript Document
Mathematics Session Logarithms Session Objectives Session Objectives 1. Definition 2. Laws of logarithms 3. System of logarithms 4. Characteristic and mantissa 5. How to find log using log tables 6. How to find antilog 7. Applications Logarithms Definition Base: Any postive real number other than one loga N x Log of N to the base a is x loga N x ax N Note: log of negatives and Example : log2 4 2 22 4 zero are not Defined in Reals Illustrative Example The number log27 is (a) Integer (b) Rational (c) Irrational (d) Prime Solution: Log27 is an Irrational number Why ? As there is no rational number, 2 to the power of which gives 7 Fundamental laws of logarithms 1) logb xy logb x logb y Let logb x A, logb y B b A x , bB y xy bAbB bA B logb xy A B logb x logb y hence proved Extension logb xyz logb x logb y logb z 2) logb x logb x logb y y 3) logb xy y logb x Other laws of logarithms 4) logb 1 0 as b0 1 5) logb b 1 as b1 b loga x 6) logb x loga b Change of base Where ‘a’ is any other base 7) blogb x x log x Let blogb x y logb b b logb y logb xlogb b logb y logb x logb y yx y 8) logbz x logb x z y Illustrative Example Simplify log 2 2 2 3 Solution: log 2 2 2 3 2 log 2 2 3 23 2 log 2 3 2 3 . log 2 log 2 3 2 Illustrative Example 3 log3 7 7 log7 3 Solution : 3 log3 7 3 3 log3 7 log3 7 log3 7 1 log3 7 1 7 log3 7 7 Hence True log7 3 True / False ? Illustrative Example If ax = b, by = c, cz = a, then the value of xyz is a) 0 b) 1 c) 2 d) 3 Solution: ax b xloga logb x logb log a Similarly logc loga y , z logb logc Hence xyz 1 Illustrative Example Find log tan 0.25 Solution: log tan 0.25 log tan 4 log 1 0 Illustrative Example 1 1 1 log2.5 ... 3 32 33 0.16 Pr ove that 4 Solution: 0.16 1 1 1 log2.5 ... 3 32 33 0.16 1/3 log2.5 2 /3 0.16 4 10 10 4 1 log10 2 4 1 log10 2 4 2 1/3 log2.5 1 1 / 3 0.4 10 4 2 1 2 1 2log2.5 2 1 log10 2 4 2 4 2 1 log2.5 2 0.4 2 Illustrative Example If log32, log3(2x-5) and log3(2x-7/2) are in arithmetic progression, then find the value of x Solution: 2log3(2x-5) = log32 + log3(2x-7/2) log3(2x-5)2 = log32.(2x-7/2) Why (2x-5)2 = 2.(2x-7/2) 22x -12.2x + 32 = 0, put 2x = y, we get y2- 12y + 32 = 0 (y-4)(y-8) = 0 y = 4 or 8 2x=4 or 8 x = 2 or 3 Illustrative Example If a2+4b2 = 12ab, then prove that log(a+2b) is equal to 1 loga logb 4log2 2 Solution: a2+4b2 = 12ab (a+2b)2 = 16ab 2log(a+2b) = log 16 + log a + log b 2log(a+2b) = 4log 2 + log a + log b log(a+2b) = ½(4log 2 + log a + log b) System of logarithms Common logarithm: Base = 10 Log10x, also known as Brigg’s system Note: if base is not given base is taken as 10 Natural logarithm: Base = e Logex, also denoted as lnx Where e is an irrational number given by e 1 1 1 1 .... .... 1! 2! n! Illustrative Example elnln7 7 True / False ? Solution: elnln7 ln7 as aloga b b Hence False Characteristic and Mantissa Standard form of decimal n m 10p where 1 m 10 Example 1234.56 1.23456 103 0.001234 1.234 103 Hence log n log m 10p log m log 10p log n log m plog 10 log m p p is characteristic of n log(n)=mantissa+characteristic log(m) is mantissa of n How to find log(n) using log tables 1) Step1: Standard form of decimal n = m x 10p , 1 m < 10 log n p log m Note to find log(n) we have to find the mantissa of n i.e. log(m) 2) Step2: Significant digits Identify 4 digits from left, starting from first non zero digit of m, inserting zeros at the end if required, let it be ‘abcd’ How to find log(n) using log tables Example n = m x 10p, p: characteristic, log(m): mantissa n Std. form m x 10p p m ‘abcd’ 1234.56 1.23456x103 3 1.2345 1234 0.000123 1.23x10-4 -4 1.23 1230 100 1x102 2 1 1000 0.10023 1.0023x10-1 -1 1.0023 1002 Log(n) = p + log(m) How to find log(n) using log tables 3) Step3: Select row ‘ab’ Select row ‘ab’ from the logarithmic table 4) Step4: Select column ‘c’ Locate number at column ‘c’ from the row ‘ab’, let it be x 5) Step5: Select column of mean difference ‘d’ If d 0,Locate number at column ‘d’ of mean difference from the row What if d = 0? ‘ab’, let it be y Consider y = 0 How to find log(n) using log tables 6) Step6: Finding mantissa hence log(n) Log(m) = .(x+y) Log(n) = p + Log(m) Summarize: Never neglect 0’s at end or front 1) Std. Form n = m x 10p 2) Significant digits of m: ‘abcd’ 3) Find number at (ab,c), say x, where ab: row, c: col 4) Find number at (ab,d), say y, where d: mean diff 5) log(n) = p + .(x+y) Illustrative Example Find log(1234.56) n Std. form m x 10p p m ‘abcd’ 1234.5 6 1.23456x1 03 3 1.2345 1234 1) Std. Form n = 1.23456 x 103 2) Significant digits of m: 1234 3) Number at (12,3) = 0899 4) Number at (12,4) = 14 Note this 5) log(n) = 3 + .(0899+14) = 3 + 0.0913 = 3.0913 Illustrative Example Find log(0.000123) n Std. form m x 10p p m ‘abcd’ 0.0001 23 1.23x10-4 -4 1.23 1230 1) Std. Form n = 1.23 x 10-4 2) Significant digits of m: 1230 3) Number at (12,3) = 0899 4) As d = 0, y = 0 Note this To avoid the calculations 4.0899 5) log(n) = -4 + .(0899+0) = -4 + 0.0899 = -3.9101 Illustrative Example Find log(100) n Std. form m x 10p p m ‘abcd’ 100 1x102 2 1 1000 1) Std. Form n = 1 x 102 2) Significant digits of m: 1000 3) Number at (10,0) = 0000 4) As d = 0, y = 0 5) log(n) = 2 + .(0000+0) = 2 + 0.0000 = 2 Illustrative Example Find log(0.10023) n Std. form m x 10p p m ‘abcd’ 0.1002 3 1.0023x10 -1 1.0023 1002 -1 1) Std. Form n = 1.0023 x 10-1 2) Significant digits of m: 1002 3) Number at (10,0) = 0000 4) Number at (10,2) = 9 To avoid the calculations 1.0009 5) log(n) = -1 + .(0000+9) = -1 + 0.0009 = -0.9991 How to find Antilog(n) (1) Step1: Standard form of number If n 0, say n = m.abcd If n < 0, convert it into bar notation say n m.abcd For eg. If n = -1.2718 = -1 – 0.2718 For bar notation subtract 1, add 1 we get n = -1-0.2718=-2+1-0.2718 n = -2+0.7282 2.7282 Now n = m.abcd or n m.abcd How to find Antilog(n) 2) Step2: Select row ‘ab’ Select the row ‘ab’ from the antilog table Eg. n = -1.2718 2.7282 Select row 72 from table 3) Step3: Select column ‘c’ of ‘ab’ Select the column ‘c’ of row ‘ab’ from the antilog table, locate the number there, let it be x Eg. n 2.7282 Number at col 8 of row 72 is 5346, x = 5346 How to find Antilog(n) 4) Step4: Select col. ‘d’ of mean diff. Select the col ‘d’ of mean difference of the row ‘ab’ from the antilog table, let the number there be y, If d = 0, take y as 0 Eg. n 2.7282 Number at col 2 of mean diff. of row 72 is 2, y = 2 How to find Antilog(n) 5) Step5: Antilog(n) If n = m.abcd i.e. n 0 Antilog(n) = .(x+y) x 10m+1 If n m.abcd i.e. n < 0 Antilog(n) = .(x+y) x 10-(m-1) Eg. n 2.7282 x = 5346 y=2 Antilog(n) = .(5346 + 2) x 10-(2-1) = .5348 x 10-1 = 0.05348 Illustrative Example Find Antilog(3.0913) Solution: 1) Std. Form n = 3.0913 = m.abcd 2) Row 09 3) Number at (09,1) = 1233 4) Number at (09,3) = 1 5) Antilog(3.0913) = .(1233+1) x 103+1 = 0.1234 x 104 = 1234 Illustrative Example Find Antilog(-3.9101) Solution: 1) Std. Form n = -3.9101 n = -3 – 0.9101 = -4 + 1 – 0.9101 n = -4 + 0.0899 4.0899 m.abcd 2) Row 08 3) Number at (08,9) = 1227 4) Number at (08,9) = 3 5) Antilog(-3.9101) Antilog 4.0899 = .(1277+3) x 10-(4-1) = 0.1280 x 10-3 = 0.0001280 Illustrative Example Find Antilog (2) Solution: 1) Std. Form n = 2 = 2.0000 2) Row 00 3) Number at (00,0) = 1000 4) As d = 0, y = 0 5) Antilog(2) = Antilog(2.0000) = .(1000+0) x 102+1 = 0.1000 x 103 = 100 Illustrative Example Find Antilog(-0.9991) Solution: 1) Std. Form n = -0.9991 -0.9991 = -1 + 1 – 0.9991 = -1 + 0.0009 1.0009 2) Row 00 3) Number at (00,0) = 1000 4) Number at (00,9) = 2 5) Antilog(-0.9991) Antilog 1.0009 = .(1000+2) x 10-(1-1) = 0.1002 Applications 1) Use in Numerical Calculations 2) Calculation of Compound Interest r A P 1 100 n Now take log 3) Calculation of Population Growth r pn po 1 100 n Now take log 4) Calculation of Depreciation r v t v o 1 100 t Now take log Illustrative Example Find 563.4 3 0.4573 6.15 3 Solution: let x 563.4 3 0.4573 log x log 6.15 3 563.4 3 0.4573 6.15 log 563.4 0.4573 log 6.15 3 3 3 1 log 563.4 log 0.4573 3log 6.15 3 Solution Cont. 1 log 563.4 log 0.4573 3log 6.15 3 1 log 5.634 10 log 4.573 101 3log 6.15 3 1 1 log 5.634 2 log 4.573 3log 6.15 3 3 1 1 .7508 2 0.6602 3 0.7889 = 0.2708 3 3 2 x = antilog (0.2708) = 0.1865 × 101 = 1.865 Illustrative Example Find the compound interest on Rs. 20,000 for 6 years at 10% per annum compounded annually. Solution: n r 10 As A P 1 20000 1 100 100 = 20000 (1.1)6 6 logA = log [20000 (1.1)6] = log 20000 + log (1.1)6 = log (2 × 104) + 6 log (1.1) = log2 + 4 + 6 log (1.1) = 0.301+ 4 + 6 × (0.0414) = 4.5494 Solution Cont. log A = 4.5494 A = antilog (4.5494) = 0.3543 × 105 = 35430 Compound interest = 35430 – 20000 = 15,430 Illustrative Example The population of the city is 80000. If the population increases annually at the rate of 7.5%, find the population of the city after 2 years. n r Solution: As pn po 1 100 2 7.5 p2 80000 1 100 = 80000 (1.075)2 log p2 = log 80000 + 2 log 1.075 = log 8 + 4 + 2 log (1.075) = 0.9031 + 4 + 2 × (0.0314) = 4.9659 Solution Cont. log p2 = 4.9659 p2 = antilog (4.9659) = 0.9245 × 105 = 92450 Illustrative Example The value of a washing machine depreciates at the rate of 2% per annum. If its present value is Rs6250, what will be its value after 3 years. t r Solution: As v v 1 t o 100 2 v 2 6250 1 100 3 = 6250 (0.98)3 log v2 = log 6250 + 3 log 0.98 = log (6.250 × 103) + 3 log (9.8 × 10–1) = log 6.250 + 3 + 3 log (9.8) – 3 = 0.7959 + 3 × (0.9912) Solution Cont. log v2 = 0.7959 + 3 × (0.9912) = 3.7695 v2 = antilog (3.7695) = 0.5882 × 104 = Rs. 5882 Class Exercise Class Exercise - 1 Find log2 3 1728 Solution : log2 3 1728 x 1728 2 .3 2 3 2 3 2 3 x x x6 6 6 3 2. 6 3 6 Class Exercise - 2 If a2 + b2 = 7ab, prove that 1 log a b log3 loga logb 2 Solution : a2 + b2 = 7ab a2 + b2 + 2ab = 9ab (a + b)2 = 9ab a b ab 21 a b 3 ab 3 taking log both sides we get a b log log 3 ab 1 2 1 loga logb 2 1 log a b log3 logab 2 Class Exercise - 3 log x log36 log64 Find x, y if log5 log6 log y Solution : log x log36 log62 2log6 2 log5 log6 log6 log6 logx = 2 log5 = log52 = log25 Similarly x = 25 1 log64 1 2 log y log64 log64 2 log8 log y 2 y=8 Class Exercise - 4 If log10 x 2 log100 y 1 find y if x = 2. Solution : log10 x 2 log100 y 1 log10 x 2 log10 y log10 y 1 log10 x 2 1 log10 100 2 1 2 1 log10 x log10 y 1 log10 x 2 log10 y 1 2 1 2 2 log10 x2 y 1 4 1 x2 y 4 1 4 10 x2 16 4 y 10 625 10 4 Class Exercise - 5 b 1 2 Simplify 5logb x and 7 3 4 2log7 8 Solution : (i) b 1 2 34 (ii) 7 7 5logb x b 1 2log7 8 2 3 1 2 log7 8 2 x 5 log x 2 b b 5 logb x 2 5 2 7 8 1 2 3 log7 81/ 2 2 3 2 8 3 4 Class Exercise - 6 Simplify logx 4 log 2 16 log 3 64 12 x x and x = 2k then k is (a) 0.25 (b) 0.5 (c) 1 (d) 2 Solution : logx 4 log 2 16 log 3 64 12 x x log 4 log16 log64 12 2 3 log x log x log x 1 2 1 3 log 4 log16 log64 12 log x log x log x 3log 4 3 12 log x log 4 log x 12 log 4 log16 log64 12 log x 2log x 3log x log 4 log 4 log 4 12 log x log x log x Class Exercise – 7 (i) (i) If x, y, z > 0, such that log x log y log z , evaluate xx yy zz. yz zx xy Solution : log x log y log z yz zx xy say log x y z , log y z x , log z x y x log x xy xz y log y yz xy z log z zx yz x logx + y logy + z logz xy xz yz xy zx yz 0 logx x logy y logzz 0 logx x .y y .zz 0 xx.yy.zz = 1 Class Exercise – 7 (ii) (ii) If a, b, c > 0, such that a b c a loga b c a b logb c a b c logc then prove that ab ba = bc cb = ca ac Solution : a b c a loga b c a b logb c a b c logc 1 say loga a b c a , logb b c a b , logc c a b c bloga alogb ab b c a ab c a b ab b c a c a b 2abc Solution Cont. bloga alogb 2abc Similarly c logb blogc 2abc and alogc c loga 2abc Hence b loga + a logb = c logb + b logc= a logc + c loga logab.ba = logbc cb = logca ac ab ba bc cb caac Class Exercise - 8 Find characteristic, mantissa and log of each of the following (i) 67.77 (ii) .0087 Solution : (i) 67.77 = 6.777 × 101 Characteristic = 1 Mantissa = log (6.777) = 0.(8306+5) = 0.8311 log 67.77 = 1 + 0.8311 = 1.8311 Solution Cont. (ii) 0.087 = 8.7 × 10–3 Characteristic = –3 Mantissa = log (8.7) = 0.(9395 + 0) = 0.9395 log (0.008) = -3 + 0.9395 = 3.9395 Class Exercise 9 Find the antilogarithm of each of the following (i) 4.5851 (ii) –0.7214 Solution (i) Antilog(4.5851) = .(3846 + 1) × 105 = 38470 (ii) Antilog(–0.7214) = Antilog(–1 + 1 – 0.7214) Antilog(–1 + 0.2786) = Antilog 1.2786 = .(1897 + 3) × 100 = 0.19 Class Exercise - 10 If a sum of money amounts to Rs. 100900 in 31 years at 25% per annum compound interest, find the sum. Solution r A P 1 100 n 25 100900 P 1 100 P 100900 1.25 31 P 1.25 31 logP = log(100900) – 31log (1.25) 31 = log (1.009 × 105) – 31log (1.25) = log (1.009) + 5 – 31 log (1.25) Solution Cont. = 0.0037 + 5 – 31 (0.0969) = 5.0037 – 3.0039 = 1.9998 log P = 1.9998 P = Antilog (1.9998) = 0.9995 × 102 = 99.95 Thank you