KIFEE: Hybrid power production systems

Download Report

Transcript KIFEE: Hybrid power production systems

Hybrid power production systems
– integrated solutions
Olav Bolland
Professor
Norwegian University of Science and Technology (NTNU)
KIFEE-Symposium, Kyoto,
November 15-17, 2004
Materials and Processes for Environment and Energy
1
Bolland
Gas Technology Center NTNU – SINTEF
1
Olav Bolland
Power production in Norway



2
Bolland
National grid: 99.5% hydropower
 27000 MW - 120 TWh/a
 Per capita: 6 kW - 27000 kWh/a
Offshore oil/gas: mechanical power and local grids
 3000 MW gas turbine power - 10 TWh/a
Future:
 Wind power: 2002-2010 +3 TWh/a
 More hydropower: potential YES

acceptance NO
 Natural gas power: potential YES
problem is CO2
 CO2 is a hot issue!!
 Dependence on import of coal & nuclear power?
Gas Technology Center NTNU – SINTEF
2
Olav Bolland
Power related research at NTNU







3
Bolland
Grid and production optimisation: Scandinavian
electricity market
Hydropower technology 1) pumping turbines 2) small-scale turbines
Wind power
PV – material technology
Fuel cells – PEM and SOFC
Biomass gasification combined with gas engines and
SOFC
Natural gas
 optimal operation of gas turbines (oil/gas production)
 NOx emissions
 CO2 capture and storage
Gas Technology Center NTNU – SINTEF
3
Olav Bolland
Hybrid power production systems
– integrated solutions



Solid Oxide Fuel Cell (SOFC) integrated with a Gas
Turbine
 Potential for very high fuel-to-electricity efficiency
Cogeneration of Hydrogen and Power, with CO2
capture
 using hydrogen-permeable membrane
Power generation with CO2 capture
 using oxygen-transport membrane
Examples where advanced material technology is the
key to improved energy conversion technologies
4
Bolland
Gas Technology Center NTNU – SINTEF
4
Olav Bolland
SOFC/GT
Solid Oxide Fuel Cell integrated in Gas Turbine
Part-load and off-design performance
Control strategies
Dynamic performance
EXHAUST
Natural gas
RECIRCULATION
PreReformer
SOFC
AIR
Anode
Generator
REMAINING
FUEL
DC/
AC
Cathode
AIR
Turbine
AIR
Air
Compressor
SOFC model
5
Bolland
Gas Technology Center NTNU – SINTEF
5
Olav Bolland
Afterburner
SOFC model

r
Anode Electrolyte Cathode
Fuel
6
Bolland
Gas Technology Center NTNU – SINTEF
Air supply tube
Air
Air
6
Olav Bolland
0
Modelling of the
Temperature Distribution
• Gas streams are modelled in 1D
• Solid is modelled in 2D
Heat conduction in solid
T
k

 2  T
t c p  
Radiative heat transfer
Qrad  Ai Fi  j (Ti 4  T j4 )
r
Anode Electrolyte Cathode
Fuel
Convective heat transfer
T
T
2h
 vFluid

 TWall  TFluid 
t
z r    c p
7
Bolland
Air supply tube
Air
0
Air
Boundary between air and solid
Gas Technology Center NTNU – SINTEF
k
T
 h TFluid  TSurface  0
r


7
Olav Bolland
Mass balance and reaction kinetics
Steam reforming
CH 4  H 2O  CO  3H 2
dci
dc
 v fuel i   rxi , j
dt
dz
j
Shift
CO  H 2O  CO2  H 2
Coking
2CO  CO2  C
CH 4  C  2 H 2
K shift  e
Gshift
r
cCO2 cH 2
K shift
Fuel
)

m ole
rCH 4 m ole/ s   4274 2
e
m  bar  s
Bolland
Air supply tube
Air
RT
rCO   (cCO cH 2O 
8
Anode Electrolyte Cathode
82 000 J / mole
RT
 pCH 4  Aact
Gas Technology Center NTNU – SINTEF
Air
rH 2 
I
2F
8
Olav Bolland
0
Electrochemistry and losses
Potential balance
U cell  Eocv  IROhm  act  diff
Electrochemistry
1
H 2  O2  H 2O
2
Electromotive force
0.5
G 0 RT  pH 2 pO2 
EOCV 

ln 

2F
2 F  pH 2O 
Activation polarisation
act
8360 K
I
 2.83 10 m 
e T
Aact
4
Anode Electrolyte Cathode
r
Air supply tube
Air
2
Fuel
Air
Diffusion polarisation
diff
9
Bolland
b
3TB
RTanode  yH 2 yH 2O

ln  3TB b
 yH yH O
2F
 2 2
 RTcathode  yOb 2
ln  3TB
 
 yO
2
F

 2



Gas Technology Center NTNU – SINTEF
9
Olav Bolland
0
Overall system model
Heat exchange
between prereformer
and anode surface
Prereformer is
modelled as a
Gibbs reactor
EXHAUST
Natural gas
Thermal inertia and
gas residence times
included in the heat
exchanger models
RECIRCULATION
PreReformer
SOFC
AIR
Anode
Generator
REMAINING
FUEL
DC/
AC
Cathode
AIR
Turbine
AIR
Air
Compressor
Map-based
turbine model
Map-based
compressor model
10
Bolland
High-frequency
generator
Shaft mass inertia
accounted for
Gas Technology Center NTNU – SINTEF
10
Olav Bolland
Afterburner
Performance maps
with optimised line of operation
according to a given criteria
110
110
10 0%
Design
point
te
ta
85 %
70 %
36 %
70
55 %
60
%
70
50
%
65
40
30
%
55
25 %
%
60
%
40
50 %
44 %
me
r egi
%
e
r
5
u
4
t
pe ra
tem
w
Lo
Max SOFC T [K]
Max radial T grad [K/m]
Max axial T grad [K/m]
Operation Line
100
90
Relative Fuel Flow [% of Design]
No
80
20
%
Relative Fuel Flow [% of Design]
90
s
dy
a
ste
28
%
GT power fraction [%]
Net power [% of Design]
Net efficiency [% LHV]
Operation Line
100
No
80
70
0
K/m 2
40 0
60
10
70
75
80
85
90
95
Relative Shaft Speed [% of Design]
100
105
Lo
Bolland
me
r egi
e
r
u
rat
mpe
w te
/m
10 0K
90 0K
80 0K
65
70
95
90
85
80
75
Relative Shaft Speed [% of Design]
Line of operation for load change
11
10 00K
m
20 0K/
40
20
65
m
0K/
50
10 %
10
0K
12 0
Design
point
K
11 00
K/m
60 0
30
20
K/m
00
e
4
t
ta
ys
/m /m
d
a
0K 0 0K
e
0
t
3
8
s
Gas Technology Center NTNU – SINTEF
11
Olav Bolland
100
105
Dynamic performance of SOFC/GT
Air delivery tube
Air inlet
Air outlet
Cathode air
Cathode, Electrolyte, Anode
Fuel inlet
12
Bolland
Gas Technology Center NTNU – SINTEF
12
Olav Bolland
13
Bolland
Gas Technology Center NTNU – SINTEF
13
Olav Bolland
CO2 capture and storage
what are the possibilities?
N2
O2
Post combustion
Coal
Gas
Biomass
CO2
Separation
Power & Heat
Air
Coal
Gas
Biomass
Pre combustion
CO2
Air/O2
Steam
Gasification
Gas, Oil
CO2
H2
Reformer
+CO2 Sep
Power & Heat
N2 O 2
CO2
Compression
& Dehydration
Air
Oxyfuel
Coal
Gas
Biomass
Power & Heat
O2
Air
Air Separation
CO2
N2
Air/O2
Industrial
Coal
Gas
Processes
Biomass
Process +CO2 Sep.
Raw material
14
Bolland
CO2
Source: Draft IPCC report
’CO2 capture and storage’
Gas, Ammonia, Steel
Gas Technology Center NTNU – SINTEF
14
Olav Bolland
Membrane reforming reactor
Idea
CH4
Reformer
H2
CO
Shift
H2
CO2
CO2
capture
CO2
CH4
membrane H2
to
reactor
combustion
CO2
15
Bolland
Gas Technology Center NTNU – SINTEF
15
Olav Bolland
H2
Membrane reforming reactor
principle
Hot exhaust
Exhaust
high pressure
Feed:
CH4, H2O
Sweep gas
(H2O)
16
Bolland
Heat transfer surface
Q
CH4+H2O  CO+3H2
CO+H2O  CO2+H2
permeate
Q
H2
low pressure
Gas Technology Center NTNU – SINTEF
Hydrogen lean gas
out (H2O, CO2, CO,
CH4, H2)
Membrane
Sweep gas +
H2 (+CO2, CO,
CH4)
16
Olav Bolland
Membrane reforming reactor
in a Combined Cycle with CO2capture
Products: Power and Hydrogen
800 °C
CO2/steam
turbine
Q
SF
67 bar
CO2 to
compression
MSR-H2
Condenser
H2
H2O
PRE
Exhaust
HRSG
H2 as
GT fuel
H2 for
external use
C
Condenser
1328 °C
ST
Air
Gas Turbine
Generator
NG
Source: Kvamsdal, Maurstad, Jordal, and Bolland, "Benchmarking of gas-turbine cycles with CO2 capture", GHGT-7, 2004
17
Bolland
Gas Technology Center NTNU – SINTEF
17
Olav Bolland
High-temperature membrane for
oxygen production
N2
Air
O2
Air
Compression
Air
18
Bolland
Heat
exchange
N2
O2
Air
Cryogenic
Distillation
O
2
Oxygen
transport
Oxygen depleted air
membrane
Gas Technology Center NTNU – SINTEF
18
Olav Bolland
Membrane technology application in GT
with CO2 capture
Ion-transport membrane (O2) in reformer
H2 selective membrane in water/gas-shift reactor
WGS-H2
CO2, H2O
H2O
H2, H2O (GT fuel)
8
H2, CO2
Air compressor
Compressor
Air
ITM-O2 with
partial oxidation
and methanesteam reforming
cooling
water
Bolland
Gas Technology Center NTNU – SINTEF
Recycled
condensed
water
CH4, H2O
Steam for ITM-O2,
WGS-H2 (and possibly
a steam bottoming cycle)
19
Olav Bolland
HRSG
CO, H2
19
Gen.
Turbine
Exhaust
N2, O2, H2O, Ar
Thank you!
20
Bolland
Gas Technology Center NTNU – SINTEF
20
Olav Bolland