Transcript Document
Research Study on Wind Turbine Acoustics DRAFT Interim Results II for WNTAG March 7, 2014 Interim Report II Interim Report II for WNTAG focuses on a comparison of sound metrics with sound modeling to help inform and synchronize pre-construction estimates with post-construction monitoring. CONTENTS • New terms • Review of data collection • Sound monitoring metrics • Pre-construction sound predictions • Attended sound monitoring • Statistical confidence 03.07.2014 RSG 2 Review of data collection • Four sites to date – - all in Massachusetts - all 1.5 MW or greater • Five sound monitoring locations at each site - 1/3 octave bands + other metrics at 100 ms to 1 s intervals - Type I sound monitors • Infrasound monitoring at one location (inside and outside) at one site • One LIDAR location at each site • One 10-meter met tower at each site • Turbine operating conditions collected by operator • Over 120,000,000 data records logged • Over 150 sound level, meteorological, operational, and observational variables 03.07.2014 RSG 3 Sound monitoring metrics New terms • • • • • Site Location Background sound level vs ambient L90 LAf max (1-sec) L90 of the L90 03.07.2014 RSG 5 Consideration of new sound monitoring metric for Turbine sound – L90 of Lafmax(1-sec) 49 Sound Pressure Level (dBA) 48 47 46 45 44 LAf LAs 43 42 41 20:00 20:01 20:02 20:03 20:04 20:05 20:06 20:07 20:08 20:09 20:10 Time (mm:ss) 03.07.2014 RSG 6 Consideration of new sound monitoring metric for Turbine sound – L90 of Lafmax(1-sec) 49 Sound Pressure Level (dBA) 48 47 46 LAf 45 LAs 1s LAf max 44 43 1s LAs max 1s Leq 42 41 20:00 20:01 20:02 20:03 20:04 20:05 20:06 20:07 20:08 20:09 20:10 Time (mm:ss) 03.07.2014 RSG 7 Consideration of new sound monitoring metric for Turbine sound – L90 of Lafmax(1-sec) 49 Sound Pressure Level (dBA) 48 47 46 LAf 45 LAs L90 LAf max 44 43 L90 LAs max Leq 42 41 20:00 20:01 20:02 20:03 20:04 20:05 20:06 20:07 20:08 20:09 20:10 Time (mm:ss) 03.07.2014 RSG 8 Sound monitoring metrics – Background sound 49 Sound Pressure Level (dBA) 48 47 46 45 44 LAf LAs 43 42 41 00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 Time (mm:ss) 03.07.2014 RSG 9 Sound monitoring metrics – Background sound 49 Sound Pressure Level (dBA) 48 47 46 LAf 45 LAs 1s LAf max 44 43 1s LAs max 1s Leq 42 41 00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 Time (mm:ss) 03.07.2014 RSG 10 Sound monitoring metrics – Background sound 49 Sound Pressure Level (dBA) 48 47 46 LAf 45 LAs L90 LAf max 44 43 L90 LAs max Leq 42 41 00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 Time (mm:ss) 03.07.2014 RSG 11 Background L90 - Variability 03.07.2014 RSG 12 Effect of wind speed on L90 – wind shear Height Wind Shear Wind Speed 0.3 Wind shear exponents Height -0.2 0.6 Wind Speed 03.07.2014 RSG 13 Background L90 and Wind Speed are significantly correlated Slopes of 80-meter wind speed vs sound level for various methodologies 03.07.2014 RSG 14 Wind speeds vary during any measurement period 12% 10% ws90 9 m/s bin Frequency 8% 6% 4% 1.3 standard deviations 2% 0% 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80 m Height Wind Speed (in m/s) Example of a 10-minute period at one site, showing the frequency of occurrence of 0.5 m/s bins for 9 m/s average wind speed 03.07.2014 RSG 15 Pre-construction sound predictions Example of pre-construction modeling methodology for one site 370 meters downwind Sound Pressure Level (dBA) 60 55 Background L90 50 45 40 35 30 25 20 0 03.07.2014 RSG 1 2 3 4 5 6 7 8 9 10 80 meter LIDAR wind speed (m/s) 11 12 13 14 15 17 Example of pre-construction modeling methodology for one site 370 meters downwind Sound Pressure Level (dBA) 60 Background L90 55 50 Best fit L90 of L90 45 40 35 30 25 20 0 1 2 3 4 5 6 7 8 9 10 80 meter LIDAR wind speed (m/s) 11 12 13 14 15 Slope of brown line in db/meter per second L90 of L90 of L90 of L50 of 5-minute 5-minute 5-minute 5-minute Location L90s Leqs L50s L90s 1 1.7 1.2 1.6 1.8 2 1.6 1.3 1.4 1.5 3 1.6 1.4 1.3 1.8 4 1.2 1.2 1.2 1.2 5 1.3 1.2 1.2 0.6 Average 1.5 1.3 1.3 1.4 03.07.2014 RSG 18 Example of pre-construction modeling methodology for one site 370 meters downwind Sound Pressure Level (dBA) 60 Background L90 55 Best fit L90 of L90 50 Model G=0.5+2 45 40 35 30 25 20 0 03.07.2014 RSG 1 2 3 4 5 6 7 8 9 10 80 meter LIDAR wind speed (m/s) 11 12 13 14 15 19 Example of pre-construction modeling methodology for one site 370 meters downwind Sound Pressure Level (dBA) 60 Background L90 55 Best fit L90 of L90 50 Model G=0.5+2 45 Model + Background 40 35 30 25 20 0 03.07.2014 RSG 1 2 3 4 5 6 7 8 9 10 80 meter LIDAR wind speed (m/s) 11 12 13 14 15 20 Example of pre-construction modeling methodology for one site 370 meters downwind Sound Pressure Level (dBA) 60 Background L90 55 Best fit L90 of L90 50 Model G=0.5+2 45 Model + Background 40 35 30 25 20 Modeled Turbine Leq minus Bkg L90 (dB) 0 1 2 12 3 4 5 6 7 8 9 10 80 meter LIDAR wind speed (m/s) 11 12 13 14 15 10.3 10 9.2 8.9 7.5 8 7.3 7.7 7.2 6.1 6 4 2 0 0 03.07.2014 RSG 1 2 3 4 5 6 7 8 9 10 11 80 meter LIDAR wind speed (m/s) 12 13 14 15 21 Sound Pressure Level (dBA) Measured L90s of turbine sound levels 60 Turbine + Bkg (filtered L90) - Day 55 Turbine + Bkg (filtered L90) - Night 50 Best fit L90 of L90 45 Model + Regr Bkg 40 35 30 25 20 0 03.07.2014 RSG 2 4 6 8 10 80 meter LIDAR wind speed (m/s) 12 14 22 Sound Pressure Level (dBA) Perfect modeling of wind turbine sound 60 Model + L90 points Best fit L90 of L90 Model G=0.5+2 Model + Background 55 50 45 40 35 30 25 20 0 03.07.2014 RSG 2 4 6 8 10 80 meter LIDAR wind speed (m/s) 12 14 23 Attended sound monitoring Filtering background sound 03.07.2014 RSG 25 Filtering background sound 03.07.2014 RSG 26 Filtering background sound 03.07.2014 RSG 27 Statistical Confidence in Measurements New terms • • • • • • Statistical Bias Accuracy Precision Confidence Interval Standard Deviation Standard Error 03.07.2014 RSG 29 Comparing background to turbine-on measurements 03.07.2014 RSG 30 Estimate means and confidence intervals 03.07.2014 RSG 31 Estimate means and confidence intervals 03.07.2014 RSG 32 Suggested strategy for using different metrics for background and turbine-on measurements 03.07.2014 RSG 33 Conclusions Some specific conclusions from the report • Background sound levels vary by time of year, time of day, and day of week. • Natural short-term variation is partly a function wind speed and wind shear • Sound levels measured on the ground increase when 80 meter wind speed increases • Wind shear variation is highest at night and at low wind speeds • Background sound will contaminate measurements of wind turbine sound - Wind alone can have a significant effect - By definition, 90% of the turbine-on measurements have background levels that are higher than the L90 • When measuring over five or 10 minutes, the wind speed exceeded 90 percent of the time is likely to be at a lower integer wind speed than the mean wind speed 03.07.2014 RSG 35 More specific conclusions from the report • Since L90 and wind speed are correlated, this means that the L90 is also likely to occur at a lower wind speed relative to the mean. Adjustments can be made to account for this. • The 10th percentile wind speed is a function of the mean and standard deviation of the measured wind speed over a period • Considerations of sound metrics - Using L90 of Lafmax (1-sec) for both background and turbine-on measurements - Improving predictability by establishing a turbine-only sound limit based on background measurements during preconstruction - Incorporating some type of statistical analysis to improve confidence in compliance measurement - Adjust turbine-on sound metric (if different from background metric) to account for higher background sound. 03.07.2014 RSG 36 General conclusions Overall, real-world systems are dynamic. Methods developed should take into account likelihood that • Conditions change during the measurement • Conditions change over time • Measurements including everything that produces sound in the environment • Methods to measure and model sound will have biases • Methods to measure and model sound will have variability 03.07.2014 RSG 37 Kenneth Kaliski, P.E., INCE Bd. Cert. Senior Director Contacts Contact www.rsginc.com [email protected] 802-295-4999