Transcript Slide 1
بنام خدا عباس بهرامی عضو هیات علمی گروه بهداشت حرفه ای دانشکده بهداشت دانشگاه علوم پزشکی کاشان [email protected] PHOSPHINE 6002 PH3 MW: 34.00 CAS: 7803-51-2 RTECS: SY7525000 METHOD: 6002, Issue 2 EVALUATION: FULL Issue 1: 15 August 1994 Issue 2: 15 January 1998 OSHA : 0.3 ppm NIOSH: 0.3 ppm; 1 ppm STEL ACGIH: 0.3 ppm; 1 ppm STEL (1 ppm = 1.39 mg/m3 @ NTP) PROPERTIES: gas, BP 87.8 C; vapor density 1.17 (air = 1); spontaneously flammable in air if P2H4 is present SYNONYMS: hydrogen phosphide; phosphorous hydride; phosphorated hydrogen; phosphorous trihydride SORBENT TUBE (Hg(CN)2-coated silica gel, 300 mg/150 mg) FLOW RATE: 0.01 - 0.2 L/min VOL-MIN: 1 L @ 0.3 ppm -MAX: 16 L SHIPMENT: routine SAMPLE STABILITY: 7 days @ 25 C BLANKS: 2 to 10 field blanks per set SAMPLING RANGE STUDIED: 0.195 to 0.877 mg/m3 [1] (16-L samples) BIAS: 0.4% OVERALL PRECISION ( rT): 0.091 @ 2.64 to 17.41 μg per sample [2] ACCURACY: ± 17.6% ACCURACY TECHNIQUE: UV-VIS SPECTROMETER ANALYTE: phosphate EXTRACTION: 10 mL hot (65-70 C) acidic permanganatereagent solution DETECTOR: UV @ 625 nm CALIBRATION: standard solutions of potassium dihydrogen phosphate (KH2PO4) (1.00 mL = 49.94 μg PH3) RANGE: 0.3 to 10 μg per sample [2] ESTIMATED LOD: 0.1 μg per sample [1] PRECISION ( r): 0.074 @ 2.6 to 17.4 μg per sample [2] MEASUREMENT APPLICABILITY: The working range is 0.013 to 0.6 ppm (0.02 to 0.9 mg/m3) for a 16-L air sample. The sampler is not commercially available. INTERFERENCES: The colorimetric determination of phosphate is subject to interference by any species that also forms a molybdate complex under these condition; possible interfering species include PCl3 and PCl5 vapors and organic phosphorous compounds OTHER METHODS: This revises Method S332 [2]. OSHA Method ID-180, "Phosphine in Workplace Atmospheres", [3] employing potassium hydroxide-impregnated carbon media may be used as an alternative method. REAGENTS: 1. Potassium dihydrogen phosphate, anhydrous, KH2PO4, ACS reagent grade 2. Sulfuric acid, concentrated, ACS reagent grade 3. Ammonium molybdate,(NH4)6Mo7O24·4H2O 4. Ferrous ammonium sulfate, Fe(NH4)2(SO4)2 5. Potassium permanganate, KMnO4 6. Stannous chloride, SnCl2 7. Glycerol 8. Toluene 9. Isobutanol 10 .Methanol 11. Water, deionized or distilled. 12. Mercuric cyanide, Hg(CN)2 * 13. Standard phosphate solution. Dissolve 200 mg KH2PO4 in 1 L of distilled water. (1.00 mL = 49.94 μg PH3) 14. Molybdate solution. Dissolve 49.4 g (NH4)6Mo7O24·4H2O and 112 mL concentrated H2SO4 in distilled water to a total volume of 1 L. 15. Alcoholic sulfuric acid solution. Add 50 mL of concentrated H2SO4 to 950 mL methanol. 16. Toluene-isobutanol solvent. Mix equal volumes of toluene and isobutanol. 17. Ferrous solution. Dissolve 7.9 g Fe(NH4)2(SO4)2 and 1 mL concentrated H2SO4 in water to a total volume of 100 mL. 18. Stannous chloride solution. Dissolve 0.4 g SnCl2 in 50 mL glycerol (heat to dissolve). 19. Acidic permanganate solution. Dissolve 0.316 g KMnO4 and 6 mL concentrated H2SO4 in 1 L water. 20. Mercuric cyanide solution.* Dissolve 2 g Hg(CN)2 in 100 mL water. *See Special Precautions EQUIPMENT: 1. Sampler: Glass tube 12-cm long, 6-mm O.D., 4-mm I.D., flame-sealed ends with plastic caps, with two sections of mercuric cyanide-treated silica gel (45/60 mesh), (front = 300 mg, back = 150 mg), separated and retained by silylated glass wool plugs. (See Appendix) 2. Personal sampling pump, 0.01 to 0.2 mL/min, with flexible polyethylene or PTFE tubing. 3. Spectrometer capable of measuring absorbance or transmittance at 625 nm. 4. Two matched 5-cm absorbance cells, silica, with tight fitting caps Separatory funnel, 125-mL. 6. Beakers, 50-mL. 7. Pipets, 0.2-, 10-, and 25-mL, and other convenient sizes to make standard dilutions. 8. Volumetric flasks, 10-, 25-, 100-, and 1000mL. 9. Water bath (maintained at 65-70C). 10. Graduated cylinders, g 11. Syringes, 0.5and 1.0-mL. 12. Balance. 13. Thermometer. 14. Stopwatch. 15. Barometer SPECIAL PRECAUTIONS: Caution should be exercised when preparing the sampling media because mercuric cyanide is toxic. Work only in a hood SAMPLING: 1. Calibrate each personal sampling pump with a representative sampler in line. 2. Immediately before sampling, break the ends of the silica gel tubes to provide an opening of at least one half the internal diameter of the tube. Attach the silica gel tube to the sampling pump with flexible tubing. 3. Sample at an accurately known flow rate between 0.01 and 0.2 L/min for a total sample size of 1 to 16 L. 4. Seal tubes with plastic (not rubber) caps. SAMPLE PREPARATION: 5. Place front and back sorbent sections in separate 50-mL beakers. 6. Add 10 mL of acidic permanganate solution to each beaker. Place in a water bath maintained at 65 to 70 C for 90 min. 7. Decant the acidic permanganate solution into a 10-mL volumetric flask, and dilute to volume with distilled water. 8. Wash the silica gel twice with 3 mL portions of distilled water and decant the contents into another 10-mL volumetric flask containing 1 mL of ferrous solution. Dilute to volume with distilled water. 9. Add the contents of both 10-mL volumetric flasks (extract and washings) to a 125-mL separatory funnel. 10. Add 7.5 mL of molybdate reagent and 25 mL of toluene-isobutanol solvent to the funnel. Shake funnel for 60 seconds. Let the separatory funnel stand for 60 seconds to allow the aqueou and nonaqueous layers to separate. Discard the lower (aqueous) layer. 11. Pipet 10 mL of the nonaqueous layer into a 25-mL volumetric flask containing 10 mL of the alcoholic sulfuric acid solution. انتظار میرود دانشجو در پایان جلسه بتواند: -1انواع اسپکتروفوتومتری را بیان کند. -2قانون بیرالمبرت را توضیح دهد. -3اجزاء دستگاه اسپکتروفوتومتر را بیان کند. -4انواع منبع نور را در اسپکتروفوتومتر نور مرئی- ماوراء بنفش بیان کند. -5دو نوع cellیا کووت را توضیح دهد. -6نحوۀ تهیۀ منحنی کالیبراسیون را شرح دهد. -7روش تهیۀ منحنی کالیبراسیون بطریق Standard additionرا بیان کند. Titration • Titration – A procedure in which one substance (titrant) is carefully added to another (analyte) until complete reaction has occurred. • The quantity of titrant required for complete reaction tells how much analyte is present. • Volumetric Analysis – A technique in which the volume of material needed to react with the analyte is measured Titration Vocabulary • Titrant – The substance added to the analyte in a titration (reagent solution) • Analyte – The substance being analyzed • Equivalence point – The point in a titration at which the quantity of titrant is exactly sufficient for stoichiometric reaction with the analyte. Titration Vocabulary • End point – The point in a titration at which there is a sudden change in a physical property, such as indicator color, pH, conductivity, or absorbance. Used as a measure of the equivalence point. • Indicator – A compound having a physical property (usually color) that changes abruptly near the equivalence point of a chemical reaction. Titration Vocabulary • Titration error – The difference between the observed end point and the true equivalence point in a titration • Blank Titration – One in which a solution containing all reagents except analyte is titrated. The volume of titrant needed in the blank titration should be subtracted from the volume needed to titrate unknown. Titration Vocabulary • Primary Standard – A reagent that is pure enough and stable enough to be used directly after weighing. Then entire mass is considered to be pure reagent. • Standardization – The process whereby the concentration of a reagent is determined by reaction with a known quantity of a second reagent. Titration Vocabulary • Standard Solution – A solution whose composition is known by virtue of the way it was made from a reagent of known purity or by virtue of its reaction with a known quantity of a standard reagent. • Direct Titration – One in which the analyte is treated with titrant, and the volume of titrant required for complete reaction is measured. Titration Vocabulary • Back Titration – One in which an excess of standard reagent is added to react with analyte. Then the excess reagent is titrated with a second reagent or with a standard solution of analyte. Titration Calculations • Titration Calculations rely heavily on the ability to perform stoichiometric calculations. • Examples N aO H + H C l N aO H HCl V o lu m e u s e d (m L ) M o la rity (M ) N a O H + H 2S O 4 N aO H H 2S O 4 10 3 4 .3 10 1 7 .1 0 .6 0 .1 7 5 0 .6 0 .1 7 5 1. Neutralization 2. NaOH + HCl H2O + NaCl 2NaOH + H2SO4 2H2O + Na2SO4 3. Twice as much HCl was required. Because it takes twice as much HCl (one H) as H2SO4 (two Hs) to neutralize the same amount of NaOH 4. H2SO4(aq) + 2NaOH(aq) 2H2O + Na2SO4(aq) # L H2SO4= 0.010 L NaOHx0.60 mol NaOH 1 mol H2SO4 L H2SO4 x x L NaOH 2 mol NaOH 0.175 mol H2SO = 0.01714 L = 17.1 mL 5. #H x MA x VA = #OH x MB x VB Titration problems 1. What volume of 0.10 mol/L NaOH is needed to neutralize 25.0 mL of 0.15 mol/L H3PO4? 2. 25.0 mL of HCl(aq) was neutralized by 40.0 mL of 0.10 mol/L Ca(OH)2 solution. What was the concentration of HCl? 3. A truck carrying sulfuric acid is in an accident. A laboratory analyzes a sample of the spilled acid and finds that 20 mL of acid is neutralized by 60 mL of 4.0 mol/L NaOH solution. What is the concentration of the acid? 4. What volume of 1.50 mol/L H2S will neutralize a solution containing 32.0 g NaOH? Titration problems 1. (3)(0.15 M)(0.0250 L) = (1)(0.10 M)(VB) VB= (3)(0.15 M)(0.0250 L) / (1)(0.10 M) = 0.11 L 2. (1)(MA)(0.0250 L) = (2)(0.10 M)(0.040 L) MA= (2)(0.10 M)(0.040 L) / (1)(0.0250 L) = 0.32 M 3. Sulfuric acid = H2SO4 (2)(MA)(0.020 L) = (1)(4.0 mol/L)(0.060 L) MA = (1)(4.0 M)(0.060 L) / (2)(0.020 L) = 6.0 M 4. mol NaOH = 32.0 g x 1 mol/40.00 g = 0.800 (2)(1.50 mol/L)(VA) = (1)(0.800 mol) VA= (1)(0.800 mol) / (2)(1.50 mol/L) = 0.267 L Titration summary • For titrations we use the formula: #H x MA x VA = #OH x MB x VB Or NA x VA = NB x VB • NA is the combination of MA and #H • N is also known as normality • You can think of it a neutralizing power • We will stick with the first equation, you do not have to know N or what it stands for • This is a simplification of stoichiometry. We could get the same answer by working with moles (n = MV) and by using the balanced chemical equation Titration showdown • Titration competition (best with a burette): find the concentration of an H2SO4 solution – it could be anywhere from 0-18 mol/L • You will use the NaOH that you prepared two weeks ago and your vast knowledge of titration procedures and formulas. • The wining team, is the team closest to the correct value. • The only restriction is : don’t put base in the burette – only acid. • • • • • • • • Sources of error NaOH was not exactly 0.10 mol/L Calculation errors (e.g. converting mL to L) Not rinsing and drying the beaker for the acid Over titrating (ideally, 2 titrations should be done – one to get a rough estimate, and one to get the exact value). Acid or base left on the side of the flask or on the tip of the burette (for greater precision, water is used to rinse the tip of the burette). Errors reading volumes. Using pipette (10 mL is measured from 0 mL to 10 mL, not from 10 mL to empty) Using 10 mL of base vs. 25-50 mL For more lessons, visit www.chalkbored.com ALKALINE DUSTS 7401 NaOH, KOH, LiOH, MW : 40.00 (NaOH); CAS: 1310-73-2 RTECS: WB490000 (NaOH) and basic salts 56.11 (KOH) 1310-58-3 TT2100000 (KOH) 23.95 (LiOH) 1310-65-2 OJ6307070 (LiOH) METHOD: 7401, Issue 2 EVALUATION: FULL Issue 1: 15 February 1984 Issue 2: 15 August 1994 OSHA : 2 mg/m3 (NaOH) NIOSH: C 2 mg/m3/15 min (NaOH); Group I Pesticide ACGIH: C 2 mg/m3 (NaOH) PROPERTIES: basic, hygroscopic, caustic solids and aerosols; VP not significant SYNONYMS: alkali; caustic soda; lye; sodium hydroxide; potassium hydroxide SAMPLING SAMPLER: FILTER (1-μm PTFE membrane) FLOW RATE: 1 to 4 L/min VOL-MIN: 70 L @ 2 mg/m3 -MAX: 1000 L SHIPMENT: routine SAMPLE STABILITY: at least 7 days @ 25 °C [1,2] BLANKS: 2 to 10 field blanks per set PTFE Polytetrafluoroethylene; polyperfluoroethylene; tetrafluoroethene homopolymer; Teflon. MEASUREMENT TECHNIQUE: ACID-BASE TITRATION ANALYTE: OH- (alkalinity) EXTRACTION: 5.00 mL 0.01 N HCl, 15 min under nitrogen with stirring TITRATION: 0.01 N NaOH under nitrogen, endpoint by pH electrode CALIBRATION: 0.01 N NaOH standardized with 0.01 N HCl RANGE: 0.14 to 1.9 mg (as NaOH) per sample [1] ESTIMATED LOD: 0.03 mg per sample (as NaOH) [1] (7 x 10-4 moles of alkalinity) PRECISION (S r): 0.033 @ 0.38 to 1.5 mg NaOH per sample [1] ACCURACY RANGE STUDIED: 0.76 to 3.9 mg/m3 [1] (360-L samples) BIAS: 5.6% OVERALL PRECISION (Sˆ rT): 0.062 [1] ACCURACY: ± 16.2% APPLICABILITY: The working range is 0.4 to 5.4 mg/m 3 for a 360-L air sample. The method measures total alkalinity of alkali hydroxides, carbonates, borates, silicates, phosphates, and other basic salts, expressed as equivalents of NaOH. INTERFERENCES: Carbon dioxide in the air may react with alkali on the filter to produce carbonates but does not interfere when titrated. The carbonates will produce the equivalent amount of strong alkali that was consumed on the filter [1]. Acid a erosols may neutralize the sample, if present, producing a negative interference. OTHER METHODS: This revises Methods S381 [2] and P&CAM 241 [3]. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition, 8/15/94 REAGENTS: 1. Sodium carbonate, primary standard grade. 2. Hydrochloric acid stock solution, 0.1 N. Standardize with sodium carbonate primary standard. 3. Dilute hydrochloric acid, 0.01 N. Dilute 10.0 mL 0.1 N stock HCl to 100 mL in a volumetric flask with distilled water. 4. Water, distilled, CO 2-free. Boil and cool under N2 or bubble nitrogen through distilled water for 30 min. Store with an Ascarite trap. 5. Nitrogen, compressed. 6. Sodium hydroxide, 50% w/v.* Dissolve 50 g NaOH in CO 2-free distilled water and dilute to 100 mL. 7. Stock sodium hydroxide, 0.1 N. Dilute 8 mL 50% NaOH to 1.0 L with CO 2-free distilled water. Store under Ascarite or other CO 2absorbing trap. 8. Working sodium hydroxide solution, 0.01 N. Dilute 10 mL stock (0.1 N NaOH) to 100 mL with CO2-free distilled water. 9. Standard buffer solutions, pH 4 and 7. * See Special Precautions EQUIPMENT: 1. Sampler: 37-mm diameter PTFE membrane filter (Millipore, Fluoropore or equivalent), 1.0μm pore size, supported by a cellulose backup pad in a cassette filter holder. 2. Personal sampling pump, 1 to 4 L/min, with flexible connecting tubing. 3. pH meter with pH electrode and recorder. 4. Titration vessel, 150 to 200 mL beaker, flask or jar with cover containing openings for the pH electrode and N 2 inlet and outlet. 5. Stirrer, magnetic, and stir bar. 6. Glass rod, ca. 5-mm diameter and 10 cm long to hold filter under liquid surface in titration vessel. 7. Pipets, 5- and 10-mL. 8. Volumetric flasks, 100-mL and 1-L. 9. Burets, 50-mL, readable to 0.1 mL. 10. Tweezers. SPECIAL SPECIAL PRECAUTIONS: NaOH solutions are corrosive to tissue [4]. Handle with care. 1. Calibrate each personal sampling pump with a representative sampler in line. 2. Sample at an accurately known flow rate between 1 and 4 L/min for a sample size of 70 to 1000 L. Do not exceed a filter loading of ca. 2 mg total dust. SAMPLE PREPARATION: 3. Transfer the sample filter to a titration vessel with tweezers. Place the filter face down in the titration vessel. 4. Place the end of a glass rod in the center of the filter to maintain the filter below the liquid surface during the analysis. 5. Cover the titration vessel, add 5.00 mL 0.01 N HCl, start the magnetic stirrer and N 2 purge (ca. 0.1 L/min). 6. Allow to stand 15 min (with stirring). CALIBRATION AND QUALITY CONTROL: 7. Calibrate the pH meter with pH 4 and pH 7 buffer solutions. 8. Standardize aliquots of the 0.1 N HCl stock solution with sodium carbonate in triplicate [3]. a. Dry 3 to 5 g primary standard grade Na 2CO3 at 250 °C for 4 h. Cool in a desiccator. b. Weigh ca. 2.5 g Na 2CO3 to the nearest mg. Dissolve and dilute to exactly 1 L with CO 2-free distilled water. The concentration is ca. 0.05 N Na2CO3. c. Place 5.00 mL 0.05 N Na2CO3 solution into a titration vessel and titrate potentiometrically to a pH of 5. NIOSH Manu d. Remove electrodes, rinse them into the titration vessel, and bubble N 2 gas through contents of the titration vessel for 3 to 5 min to remove dissolved CO 2. e. Proceed with the titration to the inflection point. f. Calculate the normality of the stock HCl solution انتظار میرود در پایان جلسه دانشجو بتواند: -1اساس کار اسپکتروفوتومتر را بیان کند. -2در مورد قانون بیر المبرت توضیح دهد. -3انواع اسپکترو فوتومتر را نام ببرد -3قسمتهای مختلف دستگاه اسپکترو فوتومتر را توضیح دهد. UV-visible spectroscopy How They Work Fundamentals of modern UV-visible spectroscopy کاربرد اسپکترو فتو متری در بیو شیمی 1 – اسپكتروفتومتري بوسیله اسپكتروفتومتر شدت رنگ محلولها را با دقت اندازه گیري مي كنند. دستگاههائي كه براي رنگ سنجي به كار برده مي شوند الكتروفتومترو یا اسپكتروفتومتر نامیده مي شوند. شماي ساده زیر قسمتهاي مختلف یك الكتروفتومتر را نشان مي دهد. What is Spectroscopy? • The study of molecular structure and dynamics through the absorption, emission and scattering of light. Fundamentals of modern UV-visible spectroscopy The Electromagnetic Spectrum E = hn Fundamentals of modern UV-visible spectroscopy n=c/l Spectroscopy Spectral Distribution of Radiant Energy Wave Number (cycles/cm) X-Ray UV 200nm Visible 400nm IR 800nm WAVELENGTH(nm) Fundamentals of modern UV-visible spectroscopy Microwave BEER LAMBERT LAW Light I0 I Glass cell filled with concentration of so lution (C) As the cell thickness increases, the intensity of I (transmitted intensity of light ) decreases. Fundamentals of modern UV-visible spectroscopy الف( دانسیته اپتیك یا آبسوربنس نوري كه از یك محلول رنگي عبور مي كند مقداري از آن جذب محلول رنگي مي شود . اگر Ioشدت نور اولیه و Iشدت نور خارج شده از محلول باشد بنابراین I a شدت نوري است كه جذب محلول رنگي گردیده است. Io - I = Ia Log Io - log I =OD = Absorbanc logI/I0=OD قانون بیر المبرت logIo/I= KCL كه در آن Kضریب جذب ماده مورد آزمایش C ،غلظت جسم مورد آزمایش و Lقطر لوله مي باشد و چون معموالً قطر لوله را مساوي یك سانتي متر اختیار میكنند بنابراین خواهیم داشت: OD= log I0/I=KC Kیا ضریب جذب ماده براي مواد مختلف فرق مي كند و به آساني قابل اندازه گیري است. میزان عبور یا ترا نسمیتا نس ب( ترانسمیتانس )عبور( : مقدار نوري است كه از محلول رنگي مورد آزمایش خارج مي شود، اگر شدت نور اولي I0و نور خارج شده Iباشد : I0-I=Ia OD=Log1/T Log I0/I=Log1/T I/I0=T اندازه گیري غلظت یك محلول به دو روش مي توان غلظت یك محلول را اندازه گیري كرد: الف( از راه اندازه گیري نوري كه از محلول رنگي خارج مي شود و به آن ،Transmitance ،یا عبور می گویند؛ ب( اندازه گیري مقدار نوري كه جذب محلول رنگي مي شود و به آن دانسیته اپتیك (OPTICAL DENSITY) O.D گویند. یا آبسوربنس مي The Beer-BouguerLambert Law A log T log I / I 0 log I 0 / I b c Fundamentals of modern UV-visible spectroscopy R- Transmittance R= I I0 I0 - original light intensity I- transmitted light intensity % Transmittance = 100 x I I0 1 Absorbance (A) or optical density (OD) = Log T = Log I0 = 2 - Log%T I I Log is proportional to C (concentration of solution) and is I0 also proportional to L (length of light path Fundamentals of modern UV-visible spectroscopy through the solution). بطور كلي هر اسپكتروفتومتر: • یك منبع نوراني، • یك وسیله ایجاد نور تكرنگ با طول موج مشخص • یك سلول یا لوله مخصوص براي جادادن محلول رنگي • ،یك سلول فتوالكتریك و یك گالوانومتر دارد. Light Sources UV Spectrophotometer 1. Hydrogen Gas Lamp 2. Mercury Lamp Visible Spectrophotometer 1. Tungsten Lamp InfraRed (IR) Spectrophotometer 1. Carborundum (SIC) Fundamentals of modern UV-visible spectroscopy Dispersion Devices • Non-linear dispersion • Temperature sensitive • Linear Dispersion • Different orders Fundamentals of modern UV-visible spectroscopy Dispersion of polychromatic light with a prism Infrared monochromatic Ray Polychromatic Ray PRISM Red Orange Yellow Green SLIT Blue Violet Ultraviolet Polychromatic Ray Monochromatic Ray Prism - spray out the spectrum and choose the certain Fundamentals of modern UV-visible spectroscopy wavelength (l) that you want by moving the slit. Photomultiplier Tube Detector • High sensitivity at low light levels • Cathode material determines spectral sensitivity • Good signal/noise • Shock sensitive Anode Fundamentals of modern UV-visible spectroscopy The Photodiode Detector • Wide dynamic range • Very good signal/noise at high light levels • Solid-state device Fundamentals of modern UV-visible spectroscopy Conventional Spectrophotometer Schematic of a conventional single-beam spectrophotometer Fundamentals of modern UV-visible spectroscopy Conventional Spectrophotometer Optical system of a double-beam spectrophotometer Fundamentals of modern UV-visible spectroscopy Conventional Spectrophotometer Optical system of a split-beam spectrophotometer Fundamentals of modern UV-visible spectroscopy Cells UV Spectrophotometer Quartz (crystalline silica) Visible Spectrophotometer Glass IR Spectrophotometer NaCl Fundamentals of modern UV-visible spectroscopy Cell Types I Open-topped rectangular standard cell (a) Fundamentals of modern UV-visible spectroscopy and apertured cell (b) for limited sample volume Cell Types II Micro cell (a) for very small volumes and flow-through cell (b) for automated applications Fundamentals of modern UV-visible spectroscopy SPECTROMETRIC ANALYSIS USING STANDARD CURVE Absorbance at 540 nm 1.2 0.8 0.4 1 2 Concentration (g/l) glucose 3 4 Avoid very high or low absorbencies when drawing a standard curve. The best results are obtained with 0.1 < A Fundamentals of modern UV-visible spectroscopy < 1. Plot the Absorbance vs. Concentration to get a straight line Relating Absorbance and Transmittance • Absorbance rises linearly with concentration. Absorbance is measured in units. • Transmittance decreases in a nonlinear fashion. • Transmittance is measured as a %. • Absorbance = log10 – (100/% transmittance) Fundamentals of modern UV-visible spectroscopy Precision and Accuracy Precision – Precision + Precision – Precision + Accuracy – Accuracy – Accuracy + Accuracy + Fundamentals of modern UV-visible spectroscopy Thanks for your kind attention Fundamentals of modern UV-visible spectroscopy