Transcript Document
a11 a12 a 21 a 22 a 31 a 32 a13 a 23 a 33 b11 b12 b 21 b 22 b 31 b 32 b13 b 23 b 33 = Matrix Multiplication a11b11 a12b21 a13b31 a11b12 a12b22 a13b33 a11b13 a12b23 a13b33 a 21b11 a 22b21 a 23b31 a 21b12 a 22b22 a 23b33 a 21b13 a 22b23 a 23b33 a 31b11 a 32b21 a 33b31 a 31b12 a 32b22 a 33b33 a 31b13 a 32b23 a 33b33 Cofactor Aij a11 a12 a13 a 21 a 22 a 23 a 31 a 33 a 32 of the (i,j)th entry (-1)i+j (determinant obtained by deleting the ith row and jth column of the matrix) AA 1132 1a1 a 22 a a 23 ( 1) 11 a 32 13a 33 a 21 a 33 1 2 a 21 a 23 A12 (1) a a a11 31 a13 33 A22 a a 31 33 13 a 21 a 22 A13 (1) a a 31 32 The sign of (-1)i+j is given by next a11 a12 a 21 a 22 a 31 a 32 a13 a 23 a 33 Determinant +a11a22a33 +a21a32a13 +a31a12a23 – a31a22a13 – a21a12a33 – a11a32a23 = a11 A11+ a12 A12+ a13A13 a 22 a11 a 32 a 21 a 23 a – 12 a 31 a 33 direct expansion expanded along a13 a 21 a 22 st a 1 row a 33 + 13 a 31 a 32 = a21 A21+ a22 A22+ a23A23 a 21 a12 a13 a 22 a11 a13 a 23 a11 a12 2nd row a 32 a 33 a12 a13 a 31 a 33 a11 a13 a 31 a 32 a11 a12 = a31 A31+ a32 A32+ a33A33 a 31 a(-1) a 33by 32 i+j is given The sign of a 22 a 23 = a11 A11+ a21 A21+ a31A31 = a12 A12+ a22 A22+ a32A32 = a13 A13+ a23 A23+ a33A33 3rd row a 21 a 23 a 21 a 22 a a a a first a 22 a 23 21 23 21 22 a11 a12 a13 column a 32 a 33 a 31 a 33 a 31 a 32 a 21 a 23 a11 a13 a11 a13 second a12 a 22 a 32 a 31 a 33 a 31 a 33 a 21 a 23 column a12 a13 a11 a12 a11 a12 third a 31 a 23 a 33 a 22 a 23 a 31 a 32 a 21 a 22 column A 1 Inverse 1 (A ij ) t det A Proof a11 1 1 t A (A ij ) a 21 det A det A a 31 a11 1 a 21 det A a 31 a12 a 22 a 32 a12 a 22 a 32 a13 A11 a 23 A12 a 33 A13 a13 A11 a 23 A 21 a 33 A 31 A 21 A 22 A 23 A12 A 22 A 32 A13 A 23 A 33 t A 31 A 32 A 33 a11A11 adetA A22+a13A23 12 A12 a13A13 a11A21+a120 0 1 A12+a23A13 a 21A 21 adetA a21A11+a220 22 A 22 a 23A 23 0 det A a A a A a A 31 31 detA 32 32 33 33 0 0 =I. Explanation Similarly, it can be proved that Explanation 1 ( A ij ) t A I. A-1 hence found. det A END a11 a12 a 21 a 22 a 31 a 32 a13 a 23 a 33 Proof +a11a22a33 +a21a32a13 +a31a12a23 – a31a22a13 – a21a12a33 – a11a32a23 =a11(a22a33-a32a23) – a12(a21a33-a31a13)+ a13(a21a32-a31a22) a 21 a13a 21 aa2321 a 22 a 22 a 23 a 21 a11 a – a12 – a12 + a13 a32 a33 a 31 a 33a 31 aa3331 a 32+ 13 a 31 = a11 A11 + a12 A12 + a13A13 a 22 a 32 (expanded along first row) The sign of (-1)i+j is given by back a11 a12 a13 a 21 a 22 a 23 a 31 a 33 a 32 a11What A11+about a12 A12+ a13A13 = det A a11 A21+ a12 A22+ a13A23? a21 A21+ a22 A22+ a23A23 = det A a31 A31+ a32 A32+ a33A33 = det A Note that ax21 A + ay12A22 + a13 z A23= 23 11 21 a22 Proof2 0 Expand along first row Expand along second row Expand along third row a11 a12 a13 aax21 aya22 az 23 11 12 a13 a 31 a 32 a 33 back to inverse along 2nd row a21 A11+ a22 A12+ a23A13? along 1st row a 21 a 22 a 23 a 21 a 22 a 31 a 33 a 23 a 33 =0