Reflection of Buddhism in Contemporary Cinema

Download Report

Transcript Reflection of Buddhism in Contemporary Cinema

ENGR 2213 Thermodynamics
F. C. Lai
School of Aerospace and Mechanical
Engineering
University of Oklahoma
Increase-in-Entropy Principle
Closed systems
ΔStotal = ΔSsystem + ΔSsurroundings ≥ 0
Qk
 (S2  S1)  
0
Tk
Qk
 m(s2  s1)  
0
Tk
Example 1
Water in a tank, initially a saturated liquid at
100 ºC, undergoes a process to the corresponding
saturated vapor state. There is no heat transfer
with the surroundings during the process. If the
change of states is brought about by the action of
a paddle wheel, determine the work required per
mass and the total entropy change for the process.
Example 1 (continued)
ΔU = Q – W
W
 (ug  uf )
m
Table A-4, T = 100 ºC,
uf = 418.94 kJ/kg, ug = 2506.5 kJ/kg
sf = 1.3069 kJ/kg K, sg = 7.3549 kJ/kg K
= - (2506.5 – 418.94)
= - 2087.56 kJ/kg
Qk
Stotal  (S2  S1 )  
Tk
Δs = sg – sf = 7.3549 – 1.3069 = 6.048 kJ/kg K
Increase-in-Entropy Principle
Control volumes
(a) Steady-Flow Processes
Stotal  SCV  Ssurroundings
Qsurr
 (  mese   misi ) 
0
Tsurr
Qsurr
 m(se  si ) 
0
Tsurr
Example 2
Feedwater Heater:
Inlet 1 T1 = 200 ºC, p1 = 700 kPa,
Inlet 2 T2 = 40 ºC, p2 = 700 kPa,
Exit
sat. liquid, p3 = 700 kPa.
Find S  ?
Inlet 2
Inlet 1
Exit
Example 2 (continued)
Stotal
Qsurr
 (  mese   misi ) 
0
Tsurr
m2
 4.06
m1
Inlet 1: Superheated vapor
Table A-6,
s1 = 6.8912 kJ/kg K
Inlet 2: compressed liquid
Table A-4,
s2 = 0.6387 kJ/kg K
Example 2 (continued)
Exit:
saturated liquid
Table A-5,
s3 = 2.0200 kJ/kg K
Stotal  (1 + 4.06)(2.0200)
– [(4.06)(0.6387) + (1)(6.8912)]
= 0.7369 kJ/kg K
Increase-in-Entropy Principle
Control volumes
(b) Uniform-Flow Processes
ΔStotal = ΔSCV + ΔSsurroundings ≥ 0
 ( mese   misi )  (m2s2  m1s1)CV
Qsurr

0
Tsurr
Example 3
A 0.4-m3 rigid tank is filled with saturated liquid water
200 ºC. A valve at the bottom of the tank is opened,
and liquid is withdrawn from the tank. Heat is
transferred to the water from a source at 250 ºC so that
the temperature in the tank remains constant.
Determine
(a) the amount of heat transfer by the time one-half of
the water (in mass) has been withdrawn.
(b) the total entropy change for this process.
Example 3 (continued)
Discharging Process
Uniform-Flow Process
Sat. liquid
T1 = 200 ºC
Q
Example 3 (continued)
No inlet, one outlet
me = (m1 – m2)CV
Initial state: Sat. liquid at T1 = 200 ºC
Table A-4, v1 = 0.001157 m3/kg, h1 = 850.65 kJ/kg
s1 = 2.3309 kJ/kg K
Exit: Sat. liquid at T1 = 200 ºC
Table A-4, h1 = 850.65 kJ/kg, s1 = 2.3309 kJ/kg K
V
0.4
m1 

 345.72 kg
v1 0.001157
Example 3 (continued)
Final state: Sat. mixture at T2 = 200 ºC
m2 = ½ m1, v2 = 2v1
1
m2  m1  0.5(345.72)  172.86 kg
2
v2 = 2v1 = 2(0.001157) = 0.002314 m3/kg
v 2  v f 0.002314  0.001157
x2 

 0.00917
vg  vf
0.12736  0.001157
u2 = uf + x2ufg = 850.65 + (0.00917)(1744.7)
= 866.65 kJ/kg
Example 3 (continued)
s2 = sf + x2sfg = 2.3309 + (0.00917)(4.1014)
QCV
= 2.3685 kJ/kg K




Ve2
Vi2
 WCV   me  he 
 gze    mi  hi 
 gzi 
2
2




+ (m2u2 – m1u1)CV
QCV = mehe + (m2u2 – m1u1)CV
= (172.86)(852.45) + (172.86)(866.65)
- (345.72)(850.65) = 3077 kJ
Example 3 (continued)
Stotal  ( mese   misi )  (m2s2  m1s1)CV
Qsurr

0
Tsurr
ΔStotal = (172.86)(2.3309) + (172.86)(2.3685)
3077
- (345.72)(2.3309) 
523
= 0.616 kJ/K
Example 4
A quantity of air undergoes a thermodynamic cycle
consisting of three processes in series.
Process 1-2: constant-volume heating from p1 = 0.1
MPa, T1 = 15 ºC, and V1 = 0.02 m3, to
p2 = 0.42 MPa.
Process 2-3: constant-pressue cooling.
Process 3-1: isothermal heating to the initial state.
Employ the ideal gas model with cp = 1 kJ/kg·K, calculate
the change of entropy for each process.
Example 4 (continued)
p
3
2
1
v
Example 4 (continued)
State 1: p1 = 0.1 MPa, T1 = 15 ºC, and V1 = 0.02 m3
State 2: p2 = 0.42 MPa, V2 = V1 = 0.02 m3
State 3: p3 = p2 = 0.42 MPa, T3 = T1 = 15 ºC
 T2 
 v2 
s2  s1  c v ln    Rln  
 T1 
 v1 
cv = cp – R = 1 – 0.287 = 0.713 kJ/kg·K
p1V1 p2 V2

T1
T2
p2
0.42
T2  T1 
288  1209.6 K
p1
0.1
Example 4 (continued)
 T2 
s2  s1  c v ln  
 T1 
 1209.6 
= 1.023 kJ/kg·K
 0.713 ln 

 288 
 T3 
 p3 
s3  s2  cp ln    Rln  
 T2 
 p2 
 288 
 1 ln 
= - 1.435 kJ/kg·K

 1209.6 
Example 4 (continued)
 T1 
 p1 
s1  s3  cp ln    Rln  
 T3 
 p3 
 0.1  = 0.412 kJ/kg·K
 0.287 ln 

 0.42 
Δstotal = Δs12 + Δs23 + Δs31
= 1.023 – 1.435 + 0.412 = 0