Reflection of Buddhism in Contemporary Cinema
Download
Report
Transcript Reflection of Buddhism in Contemporary Cinema
ENGR 2213 Thermodynamics
F. C. Lai
School of Aerospace and Mechanical
Engineering
University of Oklahoma
Energy Analysis for a Control Volume
Conservation of Mass
Net Change in = Total Mass Entering CV
Mass within CV
Total Mass
Leaving CV
mCV mi me
dmCV
mi me
dt
Steady State
AV
m AV
v
mi me
Example 1
Feedwater Heater:
Inlet 1 T1 = 200 ºC, p1 = 700 kPa, m1 40 kg/ s
Inlet 2 T2 = 40 ºC, p2 = 700 kPa, A2 = 25 cm2
Exit
sat. liquid, p3 = 700 kPa, (AV)3 0.06 m3 / s
Find m2 ?, m3 ? and V2 ?
Inlet 2
Inlet 1
Exit
Example 1 (continued)
mi me
AV
m AV
v
Steady State
m1 m2 m3
Inlet 2: compressed liquid
Table A-4,
v2 = 0.001008 m3/kg
Exit:
saturated liquid
Table A-5,
v3 = 0.001108 m3/kg
(AV)3
0.06
m3
54.15 kg / s
v3
0.001108
Example 1 (continued)
m2 m3 m1 = 54.15 – 40 = 14.15 kg/s
m2 v 2 (14.15)(0.001008)
V2
5.7 m / s
A2
0.0025
Energy Analysis for a Control Volume
Flow work
Energy that is necessary for maintaining a continuous
flow through a control volume.
A cross-sectional area
p fluid pressure
L width of fluid element
F = pA
W = FL = pAL = pV
Energy Analysis for a Control Volume
Energy carried by a fluid element in a closed system
2
V
e u
gz
2
Energy carried by a fluid element in a control volume
2
2
V
V
gz
e u pv
gz h
2
2
Energy Analysis for a Control Volume
Conservation of Energy
Total Energy
Total Energy
Net Change in
= Carried by Mass - Carried by Mass
Energy of CV
Entering CV
Leaving CV
Total Energy
+ Crossing Boundary
as Heat and Work
dECV
Ve2
Vi2
mi hi
gzi me he
gze QCV WCV
dt
2
2
Steady-Flow Process
A process during which a fluid flows through a
control volume steadily.
● No properties within the control volume change
with time.
● No properties change at the boundaries of the
control volume with time.
● The heat and work interactions between a steadyflow system and its surroundings do not change
with time.
Steady-Flow Process
Conservation of mass
mi me
Conservation of energy
QCV WCV
Ve2
Vi2
me he
gze mi hi
gzi
2
2
Steady-Flow Process
For single-stream steady-flow process
Conservation of mass
mi me m
Conservation of energy
(Ve2 Vi2 )
QCV WCV m (he hi )
g(ze zi )
2
QCV WCV
(Ve2 Vi2 )
(he hi )
g(ze zi )
m
m
2
Steady-Flow Devices
● Nozzles and Diffusers
A nozzle is used to accelerate the velocity of a fluid
in the direction of flow while a diffuser is used to
decelerate the flow.
The cross-sectional area of a nozzle decreases
in the direction of flow while it increases for a diffuser.
For nozzles and diffusers, WCV 0, PE 0.
mi me m,
QCV
(he hi )
m
2
(Ve
2
2
Vi )
Example 2
Steam enters an insulated nozzle at a flow rate of
2 kg/s with Ti = 400 ºC, pi = 4 MPa, and Vi 10 m / s.
It exits at pe = 1.5 MPa with a velocity of Ve 665 m/ s.
Find the cross-sectional area at the exit.
Inlet
Ti = 400 ºC
pi = 4 MPa
Vi 10 m / s.
Exit
pe = 1.5 MPa
Ve 665 m / s.
Example 2 (continued)
mv e
Ae
Ve
2
2
QCV
(Ve Vi )
(he hi )
m
2
(Vi2 Ve2 )
he hi
2
Inlet, superheated vapor
Table A-6, hi = 3213.6 kJ/kg
(10) (665) 1
3213.6
3 = 2992.5 kJ/kg
2
10
2
2
Example 2 (continued)
Table A-6, he = 2992.5 kJ/kg
250
300
1.4 MPa 1.5 MPa 1.6 MPa
2927.2 2923.2 2919.2
3040.4 3037.6 3034.8
mv e
Ae
Ve
(2)(0.1627)
= 0.000489 m2
665
T = 280 ºC
v = 0.1627 m3/kg
Steady-Flow Devices
● Turbines
A turbine is a device from which work is produced as
a result of the expansion of a gas or superheated
steam through a set of blades attached to a shaft free
to rotate.
For turbines, PE 0.
mi me m,
QCV WCV
(Ve2 Vi2 )
(he hi )
m
m
2
Example 3
Steam enters a turbine at a flow rate of 4600 kg/h.
At the inlet, Ti = 400 ºC, pi = 6 MPa, and Vi 10 m / s.
At the exit, xe = 0.9, pe = 10 kPa and Ve 50 m/ s.
If the turbine produces a power of 1 MW, find the heat
loss from the turbine.
Inlet
Ti = 400 ºC
pi = 6 MPa
Vi 10 m / s.
Exit
xe = 0.9
pe = 10 kPa
Ve 50 m/ s.
Example 3 (continued)
QCV WCV
(Ve2 Vi2 )
m (he hi )
2
Inlet: superheated vapor at 6 MPa and 400 ºC
Table A-6, hi = 3177.2 kJ/kg
Exit: x = 0.9, saturated mixture at 10 kPa
Table A-5, hf = 191.83 kJ/kg, hfg = 2392.8 kJ/kg
he = hf + xehfg = 191.83 + 0.9 (2392.8)
= 2345.4 kJ/kg
Example 3 (continued)
QCV WCV
(Ve2 Vi2 )
m (he hi )
2
he - hi = 2345.4 – 3177.2 = - 831.8 kJ/kg
Ve2 Vi2 (50)2 (10)2 1
1.2 kJ/ kg
3
2
2
10
4600
QCV 1000
( 831.8 1.2) = - 63.1 kW
3600
Steady-Flow Devices
● Compressors and Pumps
Compressors and pumps are devices to which work
is provided to raise the pressure of a fluid.
Compressors → gases
Pumps → liquids
For compressors,
For pumps,
PE 0.
QCV 0, PE 0.
QCV WCV
(Ve2 Vi2 )
(he hi )
g(ze zi )
mi me m,
m
m
2
Example 4
Air enters a compressor.
At the inlet, Ti = 290 K, pi = 100 kPa, and Vi 6 m / s.
At the exit, Te = 450 K, pe = 700 kPa and Ve 2 m / s.
If given that Ai = 0.1 m2 and heat loss at a rate of 3 kW,
find the work required for the compressor.
Inlet
Ti = 290 K
pi = 100 kPa
Vi 6 m / s.
QCV 3kW
Exit
Te = 450 K
pe = 700 kPa
Ve 2 m / s.
Example 4 (continued)
QCV WCV
(Ve2 Vi2 )
m (he hi )
2
(0.1)(6)(100)
A i Vi
A i Vi
m
= 0.72 kg/s
vi
RTi (0.287)(290)
pi
Table A-17, at 290 K, hi = 290.16 kJ/kg,
at 450 K, he = 451.8 kJ/kg.
Example 4 (continued)
WCV QCV
WCV
(Vi2 Ve2 )
m (hi he )
2
62 22 1
3 (0.72) (290.16 451.8)
3
2 10
= - 119.4 kW
Example 5
A pump steadily draws water at a flow rate of 10 kg/s.
At the inlet, Ti = 25 ºC, pi = 100 kPa, and Vi 10 m / s.
At the exit, Te = 25 ºC, pe = 200 kPa and Ve 40 m / s.
If the exit is located 50 m above the inlet, find the work
required for the pump.
Inlet
Ti = 25 ºC
pi = 100 kPa
Vi 10 m / s.
Exit
Te = 25 ºC
pe = 200 kPa
Ve 40 m / s.
Example 5 (continued)
QCV WCV
(he hi )
m
m
2
(Ve
2
2
Vi )
g(ze zi )
he – hi ~ [hf + vf (p – psat)]e - [hf + vf (p – psat)]i
Table A-4, at 25 ºC = vf (pe – pi)
vf = 0.001003 m3/kg
= 0.001003 (200 – 100) = 0.1 kJ/kg
Ve2 Vi2 (40)2 (10)2 1
0.75 kJ/ kg
3
2
2
10
g(ze – zi) = 9.8(50)/103 = 0.49 kJ/kg
Example 5 (continued)
WCV
2
2
(Ve Vi )
m (he hi )
g(ze zi )
2
= 20 (0.1 + 0.75 + 0.49)
= 13.4 kW