Folie 1 - PULSION Medical Systems SE: Startseite

Download Report

Transcript Folie 1 - PULSION Medical Systems SE: Startseite

Haemodynamic Monitoring

Theory and Practice

2

Haemodynamic Monitoring

A.

B.

C.

D.

E.

F.

G.

H.

Physiological Background Monitoring Optimising the Cardiac Output Measuring Preload

Introduction to PiCCO Technology

Practical Approach Fields of Application Limitations

Haemodynamic Monitoring

E. Introduction to PiCCO Technology 1.

2.

3.

4.

5.

6.

7.

Principles of function Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular lung water Pulmonary permeability

Introduction to the PiCCO-Technology

Parameters for guiding volume therapy

Volumetric preload - static - dynamic

Differentiated Volume Management

CO Contractility EVLW

PiCCO Technology

Introduction to the PiCCO-Technology – Function

Principles of Measurement

PiCCO Technology is a combination of transpulmonary thermodilution and pulse contour analysis CVC central venous bolus injection Lungs

Pulmonary Circulation

Right Heart Left Heart

Body Circulation PULSIOCATH

arterial thermodilution catheter

Introduction to the PiCCO-Technology – Function

Principles of Measurement

After central venous injection the cold bolus sequentially passes through the various intrathoracic compartments

Bolus injection RA RV EVLW PBV EVLW

Lungs

LA LV concentration changes over time

(Thermodilution curve) Right heart Left heart The temperature change over time is registered by a sensor at the tip of the arterial catheter

Introduction to the PiCCO-Technology – Function

Intrathoracic Compartments (mixing chambers)

RA RV Intrathoracic Thermal Volume (ITTV) Pulmonary Thermal Volume (PTV) EVLW PBV EVLW

Largest single mixing chamber Total of mixing chambers

LA LV

Haemodynamic Monitoring

E. Introduction to PiCCO Technology 1.

2.

3.

4.

5.

6.

7.

Principles of function Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular Lung Water Pulmonary Permeability

Introduction to the PiCCO-Technology – Thermodilution

Calculation of the Cardiac Output

The CO is calculated by analysis of the thermodilution curve using the modified Stewart-Hamilton algorithm

T b Injection t

CO

TD a

= (T

b

- T

i

)

x ∫

D

T

b x

V

i x

K dt

T b T i = Blood temperature = Injectate temperature V i = Injectate volume ∫ ∆ T b .

dt = Area under the thermodilution curve K = Correction constant, made up of specific weight and specific heat of blood and injectate

Introduction to the PiCCO-Technology – Thermodilution

Thermodilution curves

The area under the thermodilution curve is inversely proportional to the CO.

Temperature 36,5

Normal CO: 5.5l/min

37 Temperature 36,5 Time

low CO: 1.9l/min

37 Temperature 36,5 Time 37 5 10 Time

High CO: 19l/min

Introduction to the PiCCO –Technology – Thermodilution

Transpulmonary vs. Pulmonary Artery Thermodilution

Transpulmonary TD (PiCCO) Pulmonary Artery TD (PAC)

Aorta central venous bolus injection

Pulmonary Circulation

Lungs RA LA PA LV Right Heart Left heart

PULSIOCATH

arterial thermo dilution catheter RV

Body Circulation

In both procedures only part of the injected indicator passes the thermistor.

Nonetheless the determination of CO is correct, as it is not the amount of the detected indicator but the difference in temperature over time that is relevant!

Introduction to the PiCCO –Technology – Thermodilution

Validation of the Transpulmonary Thermodilution

Comparison with Pulmonary Artery Thermodilution

n (Pts / Measurements)

Friedman Z et al., Eur J Anaest, 2002 Della Rocca G et al., Eur J Anaest 14, 2002 Holm C et al., Burns 27, 2001 Bindels AJGH et al., Crit Care 4, 2000 Sakka SG et al., Intensive Care Med 25, 1999 Gödje O et al., Chest 113 (4), 1998 McLuckie A. et a., Acta Paediatr 85, 1996 17/102 60/180 23/218 45/283 37/449 30/150 9/27 Comparison with the Fick Method Pauli C. et al., Intensive Care Med 28, 2002 Tibby S. et al., Intensive Care Med 23, 1997 18/54 24/120

bias

±

SD(l/min)

-0,04 ± 0,41 0,13 ± 0,52 0,32 ± 0,29 0,49 ± 0,45 0,68 ± 0,62 0,16 ± 0,31 0,19 ± 0,21 0,03 ± 0,17 0,03 ± 0,24

r 0,95 0,93 0.98

0,95 0,97 0,96 - / 0,98 0,99

Introduction to the PiCCO-Technology – Thermodilution

Extended analysis of the thermodilution curve

From the characteristics of the thermodilution curve it is possible to determine certain time parameters Tb

Injection Recirculation

In Tb

e -1 MTt DSt MTt: Mean Transit time

the mean time required for the indicator to reach the detection point

DSt: Down Slope time

the exponential downslope time of the thermodilution curve T b = blood temperature; lnTb = logarithmic blood temperature; t = time t

Introduction to the PiCCO-Technology – Thermodilution

Calculation of ITTV and PTV

By using the time parameters from the thermodilution curve and the CO ITTV and PTV can be calculated Tb

Injection Recirculation

In Tb

e -1 MTt DSt

t

Intrathoracic Thermal Volume ITTV = MTt x CO Pulmonary Thermal Volume PTV = Dst x CO

Einführung in die PiCCO-Technologie – Thermodilution

Calculation of ITTV and PTV

RA RV Intrathoracic Thermal Volume (ITTV) Pulmonary Thermal Volume (PTV) EVLW LA PBV EVLW PTV = Dst x CO ITTV = MTt x CO LV

Introduction to the PiCCO –Technology – Thermodilution

Volumetric preload parameters – GEDV

Global End-diastolic Volume (GEDV)

ITTV

RA RV EVLW PBV EVLW LA LV

PTV GEDV GEDV is the difference between intrathoracic and pulmonary thermal volumes

Introduction to the PiCCO –Technology – Thermodilution

Volumetric preload parameters – ITBV

Intrathoracic Blood Volume (ITBV)

GEDV

RA RV EVLW PBV EVLW LA LV

PBV ITBV ITBV is the total of the Global End-Diastolic Volume and the blood volume in the pulmonary vessels (PBV)

Introduction to the PiCCO-Technology – Thermodilution

Volumetric preload parameters – ITBV

ITBV is calculated from the GEDV by the PiCCO Technology

Intrathoracic Blood Volume (ITBV)

ITBV TD (ml)

3000 2000 1000 0 0 1000

GEDV vs. ITBV in 57 Intensive Care Patients

Sakka et al, Intensive Care Med 26: 180-187, 2000 2000

ITBV = 1.25 * GEDV – 28.4 [ml]

3000

GEDV (ml)

Introduction to the PiCCO-Technology

Summary and Key Points - Thermodilution

• PiCCO Technology is a less invasive method for monitoring the volume status and cardiovascular function.

• Transpulmonary thermodilution allows calculation of various volumetric parameters. • The CO is calculated from the shape of the thermodilution curve.

• The volumetric parameters of cardiac preload can be calculated through advanced analysis of the thermodilution curve. • For the thermodilution measurement only a fraction of the total injected indicator needs to pass the detection site, as it is only the change in temperature over time that is relevant.

Haemodynamic Monitoring

E. Introduction to PiCCO Technology 1.

2.

3.

4.

5.

6.

7.

Principles of function Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular Lung Water Pulmonary Permeability

Introduction to the PiCCO-Technology – Pulse contour analysis

Calibration of the Pulse Contour Analysis

The pulse contour analysis is calibrated through the transpulmonary thermodilution and is a beat to beat real time analysis of the arterial pressure curve

Transpulmonary Thermodilution Pulse Contour Analysis Injection CO TPD HR = SV TD

T = blood temperature t = time P = blood pressure

Introduction to the PiCCO-Technology – Pulse contour analysis

Parameters of Pulse Contour Analysis

Cardiac Output PCCO = cal • HR •

 

Systole ( P(t) SVR + C(p) • dP dt ) dt Patient- specific calibration factor

(determined by thermodilution)

Heart rate Area under the pressure curve Aortic compliance Shape of the pressure curve

Introduction to the PiCCO-Technology – Pulse contour analysis

Validation of Pulse Contour Analysis

Comparison with pulmonary artery thermodilution

n (Pts / Measurements) bias

±

SD (l/min) Mielck

et al., J Cardiothorac Vasc Anesth 17 (2), 2003

Rauch H

et al., Acta Anaesth Scand 46, 2002

Felbinger TW

et al., J Clin Anesth 46, 2002

Della Rocca G

et al., Br J Anaesth 88 (3), 2002

Gödje O

et al., Crit Care Med 30 (1), 2002

Zöllner C

et al., J Cardiothorac Vasc Anesth 14 (2), 2000

Buhre W

et al., J Cardiothorac Vasc Anesth 13 (4), 1999

22 / 96 25 / 380 20 / 360 62 / 186 24 / 517 19 / 76 12 / 36 -0,40

±

1,3 0,14

±

0,58 -0,14

±

0,33 -0,02

±

0,74 -0,2

±

1,15 0,31

±

1,25 0,03

±

0,63 r - / - / 0,93 0,94 0,88 0,88 0,94

Introduction to the PiCCO-Technology – Pulse Contour Analysis

Parameters of Pulse Contour Analysis

Dynamic parameters of volume responsiveness – Stroke Volume Variation SV max SV min SV mean SVV = SV max – SV min SV mean

The Stroke Volume Variation is the variation in stroke volume over the ventilatory cycle, measured over the previous 30 second period.

Introduction to the PiCCO-Technology – Pulse Contour Analysis

Parameters of Pulse Contour Analysis

Dynamic parameters of volume responsiveness – Pulse Pressure Variation PP max PP min PP mean PPV = PP max – PP min PP mean

The pulse pressure variation is the variation in pulse pressure over the ventilatory cycle, measured over the previous 30 second period.

Introduction to the PiCCO-Technology – Pulse contour analysis

Summary pulse contour analysis - CO and volume responsiveness

• The PiCCO technology pulse contour analysis is calibrated by transpulmonary thermodilution • PiCCO technology analyses the arterial pressure curve beat by beat thereby providing real time parameters • Besides cardiac output, the dynamic parameters of volume responsiveness SVV (stroke volume variation) and PPV (pulse pressure variation) are determined continuously

Haemodynamic Monitoring

E. Introduction to PiCCO Technology 1.

2.

3.

4.

5.

6.

7.

Principles of function Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular Lung Water Pulmonary Permeability

Introduction to the PiCCO-Technology – Contractility parameters

Contractility

Contractility is a measure for the performance of the heart muscle Contractility parameters of PiCCO technology: - dPmx (maximum rate of the increase in pressure) - GEF (Global Ejection Fraction) - CFI (Cardiac Function Index)

kg

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameter from the p

ulse contour analysis

dPmx = maximum velocity of pressure increase

The contractility parameter dPmx represents the maximum velocity of left ventricular pressure increase.

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameter from the pulse contour analysis dPmx = maximum velocity of pressure increase femoral dP/max [mmHg/s]

2000 1500 1000 500

n = 220 y = -120 + (0,8* x) r = 0,82 p < 0,001

0 0 500 1000 1500 2000

LV dP/dtmax [mmHg/s]

de Hert et al., JCardioThor&VascAnes 2006 dPmx was shown to correlate well with direct measurement of velocity of left ventricular pressure increase in 70 cardiac surgery patients

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement GEF = Global Ejection Fraction LA RA LV

GEF = 4 x SV GEDV

RV

• is calculated as 4 times the stroke volume divided by the global end-diastolic volume • reflects both left and right ventricular contractility

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement GEF = Global Ejection Fraction sensitivity

1 0,8

19 18 16

0,6 0,4

22 20

0,2

12 8

0 0 0,2 0,4 0,6 0,8

1 specifity

Combes et al, Intensive Care Med 30, 2004 -20 15 10 5 -10 10 20 D

FAC, %

-5 -10 -15 D

GEF, % r=076, p<0,0001 n=47

Comparison of the GEF with the gold standard TEE measured contractility in patients without right heart failure

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement CFI = Cardiac Function Index

CFI = CI GEDVI

• is the CI divided by global end-diastolic volume index • is - similar to the GEF – a parameter of both left and right ventricular contractility

Introduction to the PiCCO-Technology – Contractility parameters

Contractility parameters from the thermodilution measurement CFI = Cardiac Function Index sensitivity

1

4 3,5 3 2

15 10 0,8 5 0,6

5

0,4 0,2

6

-20 -10 -5 10 20 D

FAC, %

0 0 0,2 0,4 0,6 0,8

1 specificity

-10 -15 D

GEF, % r=079, p<0,0001 n=47

Combes et al, Intensive Care Med 30, 2004 CFI was compared to the gold standard TEE measured contractility in patients without right heart failure

Haemodynamic Monitoring

E. Introduction to PiCCO technology 1.

2.

3.

4.

5.

6.

7.

Functions Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular Lung Water Pulmonary Permeability

Introduction to the PiCCO –Technology – Afterload parameter

Afterload parameter SVR = Systemic Vascular Resistance

SVR = (MAP – CVP) x 80 CO

• is calculated as the difference between MAP and CVP divided by CO • as an afterload parameter it represents a further determinant of the cardiovascular situation • is an important parameter for controlling volume and catecholamine therapies MAP = Mean Arterial Pressure CVP = Central Venous Pressure CO = Cardiac Output 80 = Factor for correction of units

Introduction to the PiCCO –Technology – Contractility and Afterload

Summary and Key Points

• The parameter dPmx from the pulse contour analysis as a measure of the left ventricular myocardial contractility gives important information regarding cardiac function and therapy guidance • The contractility parameters GEF and CFI are important parameters for assessing the global systolic function and supporting the early diagnosis of myocardial insufficiency • The Systemic Vascular Resistance SVR calculated from blood pressure and cardiac output is a further parameter of the cardiovascular situation, and gives additional information for controlling volume and catecholamine therapies

Haemodynamic Monitoring

E. Introduction to PiCCO technology 1.

2.

3.

4.

5.

6.

7.

Principles of function Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular Lung Water Pulmonary Permeability

Introduction to the PiCCO –Technology – Extravascular Lung Water

Calculation of Extravascular Lung Water (EVLW)

ITTV – ITBV = EVLW

The Extravascular Lung Water is the difference between the intrathoracic thermal volume and the intrathoracic blood volume. It represents the amount of water in the lungs outside the blood vessels.

Introduction to the PiCCO –Technology – Extravascular Lung Water

Validation of Extravascular Lung Water

EVLW from the PiCCO technology has been shown to have a good correlation with the measurement of extravascular lung water via the gravimetry and dye dilution reference methods

Gravimetry ELWI by PiCCO

40 Y = 1.03x + 2.49

Dye dilution ELWI ST (ml/kg)

30 20 25 20 15 10 5

n = 209 r = 0.96

10

R = 0,97 P < 0,001

0 0 10 20 30

ELWI by gravimetry

Katzenelson et al,Crit Care Med 32 (7), 2004 0 0 5 10 15 20 25

ELWI TD (ml/kg)

Sakka et al, Intensive Care Med 26: 180-187, 2000

Introduction to the PiCCO –Technology – Extravascular Lung Water

EVLW as a quantifier of lung edema

High extravascular lung water is not reliably identified by blood gas analysis

ELWI (ml/kg)

30 20 10 0 0 50 150 250 350 450

PaO 2 /FiO 2

550 Boeck J, J Surg Res 1990; 254-265

Introduction to the PiCCO –Technology – Extravascular Lung Water

EVLW as a quantifier of lung oedema

ELWI = 19 ml/kg

Extravascular lung water index (ELWI) normal range: 3 – 7 ml/kg

ELWI = 7 ml/kg ELWI = 14 ml/kg ELWI = 8 ml/kg

Introduction to the PiCCO –Technology – Extravascular Lung Water

EVLW as a quantifier of lung oedema

Chest x ray – does not reliably quantify pulmonary oedema and is difficult to judge, particularly in critically ill patients D

radiographic score r = 0.1

p > 0.05

80 60 40 20 0 -15 -10 -20 -40 -60 -80 10 D 15

ELWI

Halperin et al, 1985, Chest 88: 649

Introduction to the PiCCO –Technology – Extravascular Lung Water

Relevance of EVLW Assessment

The amount of extravascular lung water is a predictor for mortality in the intensive care patient

Mortality (%) ) Mortality(%

100 90 80 70 60 50 40 30

n = 81

20 0 4 - 6 > 20

ELWI (ml/kg)

Sturm J in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 129-139 80 70 60 50 40 30 20 10 0 0 < 7 n = 45 7 - 14 n = 174

*p = 0.002

Sakka et al , Chest 2002 14 - 21 n = 100

n = 373

> 21 n = 54

ELWI (ml/kg)

Introduction to the PiCCO –Technology – Extravascular Lung Water

Relevance of EVLW Assessment

Volume management guided by EVLW can significantly reduce time on ventilation and ICU length of stay in critically ill patients, when compared to PCWP oriented therapy,

Ventilation Days * p ≤ 0,05 Intensive Care days n = 101 * p ≤ 0,05 22 days PAC Group 9 days EVLW Group

Mitchell et al, Am Rev Resp Dis 145: 990-998, 1992

15 days PAC Group 7 days EVLW Group

Haemodynamic Monitoring

E. Introduction to PiCCO Technology 1.

2.

3.

4.

5.

6.

7.

Principles of function Thermodilution Pulse contour analysis Contractility parameters Afterload parameters Extravascular Lung Water Pulmonary Permeability

Introduction to PiCCO Technology – Pulmonary Permeability

Differentiating Lung Oedema

PVPI = Pulmonary Vascular Permeability Index

PVPI = EVLW PBV

EVLW PBV

• is the ratio of Extravascular Lung Water to Pulmonary Blood Volume • is a measure of the permeability of the lung vessels and as such can classify the type of lung oedema (hydrostatic vs. permeability caused)

Introduction to PiCCO Technology – Pulmonary Permeability

Classification of Lung Oedema with the PVPI

Difference between the PVPI with hydrostatic and permeability lung oedema:

Lung oedema

hydrostatic

PBV EVLW EVLW PBV

permeability

PBV EVLW EVLW PBV PVPI normal (1-3) PVPI raised (>3)

Introduction to PiCCO Technology – Pulmonary Permeability

Validation of the PVPI

PVPI can differentiate between a pneumonia caused and a cardiac failure caused lung oedema.

PVPI 4 3 2 Cardiac insufficiency Pneumonia

16 patients with congestive heart failure and acquired pneumonia. In both groups EVLW was 16 ml/kg.

Benedikz et al ESICM 2003, Abstract 60

Introduction to PiCCO Technology – Pulmonary Permeability

Clinical Relevance of the Pulmonary Vascular Permeability Index

EVLWI

answers the question:

How much water is in the lungs?

PVPI

answers the question:

Why is it there?

and can therefore give valuable aid for therapy guidance!

Introduction to PiCCO Technology – EVLW and Pulmonary Permeability

Summary and Key Points

• EVLW as a valid measure for the extravascular water content of the lungs is the only parameter for quantifying lung oedema available at the bedside.

• Blood gas analysis and chest x-ray do not reliably detect and measure lung edema • EVLW is a predictor for mortality in intensive care patients • The Pulmonary Vascular Permeability Index can differentiate between hydrostatic and a permeability caused lung oedema