Transcript Slide 1
Double-CH1313Z H. De Kerret (APC) On behalf the Double-Chooz proto-collaboration June 9 2004 Best current constraint: CHOOZ R = 1.01 2.8%(stat)2.7%(syst) e e (disappearance experiment) Pth= 8.5 GWth, L = 1,1 km, M = 5t overburden: 300 mwe World best constraint ! e x @m2atm=2 10-3 eV2 sin22θ13 < 0.2 (90% C.L) M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374 The Double-CHOOZ concept e e,, D1 = 100-200 m CHOOZ power station Near detector anti-e flux (uranium 235, 238 & plutonium 239, 241) Reaction: e + p e+ + n, <E>~ 4 MeV, Ethresholdl =1.8 MeV Dissapearance experiement Search for a departure from the 1/D2 behavior D2 = 1050 m Far detector CHOOZ site & Detector Overview e Double-Chooz, Ardennes, France Type PWR Cores 2 Power 8.4 GWth Couplage 1996/1997 (%, in to 2000) 66, 57 Constructeur Framatome Opérateur EDF Chooz-Near Chooz-Far Near site: D~100-200 m, overburden 50-80 mwe Far site: D~1.1 km, overburden 300 mwe V=2 x 12,67 m3, Dp=100-200m, Dl=1050m The CHOOZ-near site Near detector @100-200 m from the cores Exact position under study, in collaboration with EDF 250 m 125 m Detect the antineutrino e + p e+ + n Correlations: - time : 30s - space 3e : < 1m3 511 keV e+ 511 keV p - 8 MeV n Gd • Energy measurement of the e+, => E • Neutron capture on Gd, ED≈8 MeV The target is the active medium : - liquid scintillator loaded at ≈ 0.1 % en Gd Important progress from LENS The CHOOZ-near detector ~10-20 m Dense material Distance Reactor-detector Overburden (m.w.e) 100 45-53 150 55-65 200 67,5-80 ~5- 15 m Detector design • A scintillating buffer around the target (to see the gammas from positron capture and Gd decays) ~60 cm • A non scintillating buffer in front of pmts (reduce the single rates) ~ 1m • A muon veto • Increase as much as possible the active buffer for the fast neutrons coming from outside The CHOOZ-far detector 7m shielding: 0,15m steel target:80% dodécane + 20% PXE + 0.1% Gd (acrylix, r=1,2m, h = 2,8m, 12,7 m3) -catcher: 80% dodécane + 20% PXE (acrylique, r+0,6m – V= 28,1 m3) 7m non-scintillating buffer: same liquid (+ quencher?) (r+0.95m, , V=100 m3) 7m Existing pit PMTs supporting structure Muon VETO: scintillating oil (r+0.6 m – V=110 m3) Scintillator Overview Gadolinium doped scintillator Goal: 0.1% Gd loaded scintillator Light yield ~8000 /MeV + attenuation length > 5m STABLE Compatible with acrylic R&D LENS 1998-2004 •Carboxylate based scintillator •Beta dikitonates based scintillator 3+Gd (R-COOH)x Gd-Acac R-COO- 3+Gd Carboxylate Scintillator development Gd-ACAC Volume [m3] Type -target 12,7 0,1% Gd loaded scintillator -Catcher 28,1 Unloaded scintillator Buffer 100 Non scintillating oil Veto 110 Scintillating oil Baseline - PC (C9H12), PXE (C16H18) attack acrylics - Dodécane + PXE more resistant … - R&D Saclay+MPIK+Gran Sasso (08/2004) Flours concentration - Match scintillation light to PMTs - PPO : 6g/l - BisMSB: 20mg/l Baseline: 80% dodecane + 20% PXE + 6 g/l PPO + 20 mg/l BisMSB + 0.1% Gd LY~8000 /MeV , L = 5-10 meters Scintillator R&D R&D 2004 1/ Long term stability 2/ scintillator-acrylic compatibility Ageing test @50o (Saclay , Gran Sasso/INR, MPIK) Material compatibility test (Saclay , MPIK) Saclay acrylic envelop design in progress (scintillator tests, Saclay) First ageing test @40o, 50o (Caroxylates, Gran Sasso / INR) Sensitivity & Discovery Potential Description of the simulation Analyse standard Expected events / bin i: NiA( sin2(213)gen ) Tested spectrum OiA: Theoretical prediction : TiA= (1 + a + bA + ci) x NiA( sin2(213)rec ) σ abs 0.02 σ b2b 0.01 σ rel 0.006 Rate bkg 0.01 σ bkg 1.0 90% C.L. sensitivity if sin2(213)=0 m2=2.0 10-3 eV2 3 years (efficiency included) sin2(213)<0.03 m2=2.4 10-3 eV2 3 years (efficiency included) sin2(213)<0.024 Relative normalisation error m2=2.0 10-3 eV2 3 years (efficiency included) Influence of flat backgrounds Th. Lasserre Influence of the shape error Th. Lasserre Lindner’s analysis of Double-CHOOZ sensitivity Lindner’s analysis of Double-CHOOZ sensitivity 12.7 tons, 3 years P. Huber et. al. hep/0403068 340 tons, 3 years e Attempt to compare Double-Chooz with Beams & Superbrams m2=2.0 10-3 eV2 P. Huber et. al. hep/0403068 Double-CHOOZ starts with two detectors on 01/01/2008 T2K starts at FULL intensity on 01/01/2010 e oscillation @Double-CHOOZ @1,05 km e Spectrum deformation @Double-CHOOZ sin2(213)=0.15 Double-CHOOZ discovery potential Th. Lasserre Double-CHOOZ discovery potential Compare I Double-Chooz & T2K (limite @90% C.L.) Attempt to compare Double-Chooz with T2K (3σ discovery potential) 22θ sin 22θ 13 = 0.08 sin sin22θ 0.04 1313= =0.14 Energy scale Energy scale modified on both detectors by +1% Use a 1 parameter fit for all the rest 13(fit) Strong distortion 13(gen) Position of the near detector Moving the Close detector by +0.5m Distance to reactor increases Dist to Far decreases Burn-up effect (330 days fuel evolution) First day day 330 (fit) 235U 239Pu 238U 241Pu (gen) Proto-collaboration, Letter of Intent and prospects e The current proto-collaboration Chooz, November 2003 Double-CHOOZ meetings • Chooz, November 2003 • Heidelberg, February 2004 • Tubingen, April 2004 Letter of Intent Double-Chooz & IAEA IAEA :Intenational Agency for Atomic Energy Missions: Safety & Security, Science & Technology, Safeguard & Verification Control that member states do no use civil installations with military goals (production of plutonium !) Control of the nuclear fuel in the whole fuel cycle * Fuel assemblies, rods, containers * (*Anti-neutrinos could play a role!) Distant & unexpected controls of the nuclear installations * Why IAEA is interested to antineutrino ? IAEA wants the « state of the art »methods for the future ! Several futuristic methods under study Kr, I, Cs gas trace in atmosphere Cost issue … AIEA wants a feasibility study on antineutrinos - Monitoring of the reactors with a Double-Chooz like detector ? - Monitoring a country – new reactors “à la KamLAND” CEA/Saclay we already ask some support for: - Double-Chooz near detector - New nuclear physics program to improve knowledge of reactor spectrum Improving CHOOZ – Statistical error - @CHOOZ: R = 1.01 2.8%(stat)2.7%(syst) increase luminosity L = t x P(GW) x Vcible CHOOZ Double-Chooz 5,555 m3 12,67 m3 6,77 H/m3 6,82 H/m3 quelques mois 3-5 years Rate 26/d Far : 60/d Near: 3000/d Number of events 2700 Far : 60 000/3 years Near: >3 106/3 years Erreur stat 2,7% 0,4% Target volume Number of free protons Data taking Improve CHOOZ – Systematic error @CHOOZ : σsys=2.8% Decrease the total systematic error 1. Detector design 2. 2 identical detectors vers σrelative sys~0,6% 3. Background – improve S/B>100 error<1% Detector simulation & calibration Photons tracking 2 simulation indépendantes • PCC & APC simulation de CHOOZ (GEANT3) • Kurchatov simulation Borexino (GEANT4) Photons tracking 20% PXE + 80% dodécane + 0.1% Gd + 6g/l PPO + 20mg/l BisMSB ~200 p.e./MeV with 500 PMTs – reflection coef =0% Les PMs 8’’ are within the buffer ( glass at 25 cm inside) Light collection ~flat (+5% maxi. in the target) X [cm] Y [cm] Z [cm] Yield[%] 0 0 0 100 0 60 0 101,0 0 120 0 102,5 0 180 0 109,6 0 60 140 102,3 0 120 140 103,5 0 150 170 104,8 0 180 200 107,7 Systematic errors Systematic error; « reactor » type Réacteur Error type CHOOZ New experiment Double-Chooz Cross section Antineutrinos Thermal power E/Fission 0.2% 1.9% 0.7% 0.6% 2.1% 0.2% <1.9% <0.7% <0.6% ~2.1% O(0.1%) O(0.1%) O(0.1%) O(0.1%) O(0.1%) Systematic errors: « detector » type Detector Error type CHOOZ solid angle Scintillator density %H Target «Spill in/out» Dead 0.3% 1.2% 0.3% 1.0% ? New experiment 0.2% 0.1% <1% 0.2% 1.0% 0.25% M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374 Double-Chooz 0.2% O(0.1%) O(0.1%) 0.2% O(0.1%) <0.25% Same batch of scintillator for both detectors Fast signal: positron Non scintillating Buffer scintillanting buffer Ee+ (MeV) Ee+ (MeV) • CHOOZ : only scintillanting buffer • Detector = calorimter : positron energy is fully contained • But accidental rate high threshold on e+, many analysis cuts • Double-CHOOZ : 1 Scintillanting buffer (60cm) + 1 Non-scintillanting buffer (95cm) • Reduce the PMTs noise (40K,Tl) • Eseuil hardware ~500 keV No more thrshold cut 0% systematic ! • 1.022 MeV calibration point at e+ spectrum start ( ) • BDFs measuremnt above and below the positiron spectrum Delayed signal : neutron Non scintillating buffer H Scintillating buffer Gd Gd H En (MeV) (H. de Kerret) En (MeV) Gadolinium loaded scintillator (~0.1%) • Gd 8 MeV ’s (capture on Gd : 86.6%1.0% in CHOOZ, Eur.Phys.J. C27 (2003) 331-374) • H 2.2 MeV ’s • n capture prob. 1.0% (CHOOZ) O% with 2 detectors (MC uncertainty) • t (e+-n) 0.4% (CHOOZ) 0% with 2 detectors (MC uncertainty) n energy 0.4% (CHOOZ) Scintillating buffer mandatory (as in CHOOZ) “spill in / spill out” effect 1.0% (CHOOZ) O(0.1%) 2 identical detectors needed! But neutronics to be checked Analyis cuts @CHOOZ Erreur e+ seuil e+/géode (30cm) n capture Neutron énergie Distance n-géode (30 cm) Distance (e+-n) t (e+-n) n multiplicity CHOOZ 0.8% 0.1% 1.0% 0.4% 0.1% 0.3% 0.4% 0.5% 1.5% M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374 Analysis cuts @Double-CHOOZ Cuts 6<En (MeV)<12 2< n<100s D<1-2m Error type Distance (e+-n) En t (e+-n) CHOOZ 0.3% 0.4% 0.4% - Double-CHOOZ 0 - 0.2% 0.2% 0.1% 0.2-0.3% Used or not ? Calibration Cf electronics All systematic errors in Double-Chooz R&D on systematic errors in 2004 • Dead time (Heidelberg) - important (~50%) but simple (500microsec/muon) - generate couples of test particles et measure their survival time - hardware tests in 2004 • Quantity of liquid in the target (Saclay) - build both targets in factory in the same time + test filling - geometrical measurements in factory and on site - weight liquids in the same intermdiate tank 0.1% • Distance detector-reactor core(APC-Saclay ph.nucl.+Subatech?) -10cm a 150 m 0.15% systematic error - 10cm in Chooz pub. (+- 3cm at Bugey) - core center of gravty movement of 6cm monitored at bugey Background Reduce backgrounds - CHOOZ: S/B ~ 25 - Double-CHOOZ aim: S/B>~100 - Double-CHOOZ-far (300 mwe): 12.7 m3 Signal x ~3 -Accidentals: Buffer non scintillanting buffers Double-Chooz: B/3 less than 0.5% and measurable -correlated events: CHOOZ: ~1 recoil proton / day & signal =26/d Double-CHOOZ: S* 2.3 & B/2 S/B>100 (neutronn simulation in progress) -Double-CHOOZ-near (~60 mwe): Signal x 50-100 SCHOOZ-loin -Dproche ~100-200m Signal * >30, but * 30 - all backgrounds: BDF CHOOZ-loin * <30 S/B > 100 Measure all BDFs at 50% Accidental Ibackground S/B>103 S/B=350 Spallation neutrons • Simulation of neutrons from near-miss (Geant4) Neutron produits dans la roche et transportés jusqu’au détecteurs (Fluka) • Liquid buffers rejection • Double-CHOOZ-far : simulation <2/day Double-CHOOZ-near : thicker VETO Surrounded by 100 mwe rock shielding Muon induced production of radioactive isotope -Background: Production of radioactive nuclei on 12C in the scintillator -NA54: Isotope production on 12C target @SPS/CERN, beam @100/190 GeV (E) E0.73 (T. Hagner et. al.) - Isotope T1/2 Emax (MeV) Rate (day-1) 300 mwe Rate (day-1) 20 m (50 mwe) Type 12B 0.02 s 13.4 - - Uncorrelated 11Be 13.80 s 11.5 < 2 < 23 Uncorrelated 11Li 0.09 s 20.8 - - Correlated + 8He 0.18 s 13.6 0.12 s 10.6 20.3 214 8Li 0.84 s 16.0 41 3914 Uncorrelated 6He 0.81 s 3.5 141 15516 Uncorrelated 11C 20.38 m 0.96 77049 8765562 Uncorrelated 10C 19.30 s 1.9 9812 1118141 Uncorrelated 9C 0.13 s 16.0 41 4715 Uncorrelated 8B 0.77 s 13.7 61 6914 Uncorrelated 7Be 53.3 d 0.48 19620 2228223 Uncorrelated 9Li +, EC • Rates are given for the CHOOZ 10 t PXE case (C16H18) Correlated events Dominated by -n cascade, ~few 100ms Li9/He8(Kamland?) 8He, 9Li, 11Li (instable isotopes) to know: the ratio , trigger on the other branch of Li9 (M.Cribier: 2 betas >3 MeV) measure li9 between 8 MeV and 11.9MeV the shapes Correlated Correlated calibration Same source used in both detectors • gammas 1% de différence between the 2 energy scale 100 KeV at 6 MeV (0.2% systematic) • Cf (neutron multiplicity) <0.2% difference between the 2 neutron efficiencies • Laser + fibres optical fiber pm stability, absorption length full scan of the target volume Conclusion Détector and technology known (CHOOZ, BOREXINO, KamLAND, … Few R&D: liquid scintillator, cibles, systematic errors Proto-collaboration: Saclay,Nantes, APC, TUM, MPIK, Tubingen,Hambourg, Kurchatov, RAS, Italy ,……… Letter of Intent proposal fall 2004 Strong involvement of EDF (support of the plant management to get funding from the company direction) Detector cost: estimated to 7.25 Meuros ( without the civil engineering of the near detector) Approved in France (IN2P3 and CEA/saclay) 2-2.5 Meuros ( without the civil engineering of the near detector) install the far detector in2006 & full data taking in early 2008