Transcript [R] –irtoys
[R] –irtoys – [R] –irtoys – • For binary response data • Provides common interface to some functions of – ICL (external to R) – BILOG (external to R) – ltm (R function) • Syntax used is simpler and consistent across these packages • Other useful IRT functions ~ NPP • Good plotting capabilities Dataset • BDI (21 items) • 818 subjects • See word-doc for items • Split the items into three sets: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Dataset 1: descript(beck[,c(2,5,8,11,14,17,20)]) Sample: 7 items and 818 sample units; 0 missing values Proportions for each level of response: 0 1 logit t1bdi1 0.7922 0.2078 -1.3381 t1bdi4 0.5538 0.4462 -0.2160 t1bdi7 0.5477 0.4523 -0.1913 t1bdi10 0.6027 0.3973 -0.4167 t1bdi13 0.4853 0.5147 0.0587 t1bdi16 0.4279 0.5721 0.2905 t1bdi19 0.4315 0.5685 0.2756 Frequencies of total scores: 0 1 2 3 4 5 6 7 Freq 133 114 91 115 103 106 91 65 Biserial correlation with Total Score: Included Excluded t1bdi1 0.6005 0.4647 t1bdi4 0.7018 0.5590 t1bdi7 0.6190 0.4513 t1bdi10 0.6565 0.5025 t1bdi13 0.7167 0.5780 t1bdi16 0.6143 0.4466 t1bdi19 0.7188 0.5824 Cronbach's alpha: value All Items 0.7861 Excluding t1bdi1 0.7680 Excluding t1bdi4 0.7494 Excluding t1bdi7 0.7708 Excluding t1bdi10 0.7607 Excluding t1bdi13 0.7454 Excluding t1bdi16 0.7716 Excluding t1bdi19 0.7446 -irtoys- fitting 1PL/2PL models • irtoys_beck_1pl1 <est(beck[,c(2,5,8,11,14,17,20)], model="1PL", engine="ltm") • irtoys_beck_2pl1 <est(beck[,c(2,5,8,11,14,17,20)], model="2PL", engine="ltm") > irtoys_beck_2pl1 [,1] [,2] [,3] t1bdi1 2.166786 1.04466980 t1bdi4 2.102861 0.18276282 t1bdi7 1.363356 0.19506741 t1bdi10 1.727944 0.37145589 t1bdi13 2.408886 -0.03577061 t1bdi16 1.368479 -0.28294050 t1bdi19 2.527411 -0.19989956 0 0 0 0 0 0 0 > irtoys_beck_1pl1 [,1] [,2] [,3] t1bdi1 1.860460 1.11158683 t1bdi4 1.860460 0.19005034 t1bdi7 1.860460 0.16912484 t1bdi10 1.860460 0.35943444 t1bdi13 1.860460 -0.04331848 t1bdi16 1.860460 -0.24064261 t1bdi19 1.860460 -0.22790729 0 0 0 0 0 0 0 par(mfrow = c(1,2)) plot(irf(irtoys_beck_1pl1), co=NA, main="1PL") plot(irf(irtoys_beck_2pl1), co=NA, main="2PL") Compare with Non-parametric • Plot 1PL/2PL response functions for each item and compare with non-parametric curve which does not assume logistic function • par(mfrow = c(1,1)) • npp(beck, items=c(2), from = -2, to = 4, main = "Item 2", co=3) • plot(irf(irtoys_beck_1pl1[c(1),]), co="red", add = TRUE) • plot(irf(irtoys_beck_2pl1[c(1),]), co="blue", add = TRUE) Estimating ability th.mle_1pl1 <mlebme(resp=beck[,c(2,5,8,11,14,17,20)], ip=irtoys_beck_1pl1) th.mle_1pl2 <mlebme(resp=beck[,c(2,5,8,11,14,17,20)], ip=irtoys_beck_2pl1) Patterns 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 i1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 i4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i7 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i10 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 i13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ability/SE for 1PL Ability/SE for 2PL i16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i19 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.276574869 1.276574869 3.999935513 1.276574869 1.276574869 1.276574869 3.999935513 1.276574869 1.276574869 0.734365930 3.999935513 3.999935513 3.999935513 3.999935513 1.276574869 3.999935513 3.999935513 1.276574869 3.999935513 3.999935513 3.999935513 3.999935513 1.276574869 3.999935513 3.999935513 3.999935513 0.6175342 0.6175342 5.7727585 0.6175342 0.6175342 0.6175342 5.7727585 0.6175342 0.6175342 0.4850223 5.7727585 5.7727585 5.7727585 5.7727585 0.6175342 5.7727585 5.7727585 0.6175342 5.7727585 5.7727585 5.7727585 5.7727585 0.6175342 5.7727585 5.7727585 5.7727585 1.171368774 1.327602513 3.999928649 1.327602513 1.171368774 1.482503737 3.999928649 1.171368774 1.171368774 0.713049229 3.999928649 3.999928649 3.999928649 3.999928649 1.327602513 3.999928649 3.999928649 1.171368774 3.999928649 3.999928649 3.999928649 3.999928649 1.327602513 3.999928649 3.999928649 3.999928649 0.5730090 0.6230293 5.6888878 0.6230293 0.5730090 0.6841684 5.6888878 0.5730090 0.5730090 0.4720853 5.6888878 5.6888878 5.6888878 5.6888878 0.6230293 5.6888878 5.6888878 0.5730090 5.6888878 5.6888878 5.6888878 5.6888878 0.6230293 5.6888878 5.6888878 5.6888878 Zoom