Transcript Slide 1
Ancient DNA in Sediments Department of Evolutionary Biology Zoological Institute University of Copenhagen Ancient DNA Studies DNA from Sediments Sample Information Samples Site Age range (B.P.) 1/02/0.5 Kolyma lowland, Plakhin Jar modern tundra soil 1/93/4.0 Kolyma lowland, Kon'kovaya river 10.425±45 yr 2/01/4.8 Laptev Sea coast, Cape Bykovskii 18.980±70 yr (8-9 kyr) 7/90/1.6 Kolyma lowland, Chukochia river 20-30 kyr 3/01/20.7 Laptev Sea coast, cape Svyatoi Nos 300-400 kyr 4/01/9.2 Laptev Sea coast, cape Svyatoi Nos 300-400 kyr 6/90/30.7 Kolyma lowland, Chukochia river 1.5-2.0 Ma 6/90/31.1 Kolyma lowland, Chukochia river 1.5-2.0 Ma 1/99/14.5 Beacon Valley, Antarctica 8.1 Ma Clutha River 624±50 yr Permafrost New Zealand Cave sediment Microscopy Cells in the bacterial size range (about 107cells/ gww, average cell volume 0.03-0.05 µm3/cell) Occasional fine rootlets (≥2 mm in diameter), seeds and small unidentifiable multicellular fragments No bone/hair/identifiable animal soft tissue PCR Based Analyses 4 x 0.25gww soil FAST PREP DNA extraction/purification PCR (“universal”/”specific” primers for rbcL/mtDNA) Cloning Sequencing BLAST (GenBank)/phylogenetic analysis Precaution, Controls, Criteria Special rotation-column coring method Spiking with bacterial Serratia marcescens Isolated, dedicated clean lab. Isolated ventilation system, UV-radiation, flow hood Facemasks, gamma-sterilized glows, hats Removal of core surfaces Cleaning of reagents/tools: UV, HCL, bleach, ultrafiltration Extraction/ PCR controls Cloning Independent reproducibility of results Phylogenetic criteria Important! Not previously worked with in the Copenhagen lab (at that stage): plant rbcL DNA DNA from Arctic or NZ animals (including megafauna) except for Reindeer mtDNA Previously produced PCR products is a major source of contamination Amplification Results Plants (rbcL about 130 bp): PCR products up to 300-400 kyr (including NZ cave site) No PCR products million year old samples Animal (mtDNA 88-234 bp): PCR products up to 20-30 kyr (including NZ cave site, only primers for bird mtDNA) no PCR products 300-400 kyr and million year old samples The results were independently confirmed in Oxford Plant identifications (multiple GenBank sequences showing >96% similarity to the clones; reproducibility confirmed by a bootstrap test ) Class or Subclass =9 Liliopsida Coniferopsida Asteridae Rosidae Caryophyllidae Eudicotyledon Bryidae Polytrichopsida Bryopsida Order =22 Poales Liliales Coniferales Ericales Malpighiales Myrtales Malvales Fagales Fabales Rosales Brassicales Caryophyllales Lamiales Asterales Gentianales Ranunculales Rhizogoniales Hypnales Bryales Polytrichales Grimmiales Pottiales Family =28 Cyperaceae Poaceae Liliaceae Cupressaceae Podocarpaceae Ericaceae Salicaceae Flacourtiaceae Onagraceae Malvaceae Nothofagaceae Fabaceae Rhamnaceae Rosaceae Brassicaceae Caryophyllacae Polygonaceae Antirrhinaceae Asteraceae Campanulaceae Rubiaceae Papaveraceae Rhizogoniaceae Hylocomiaceae Polytrichaceae Grimmiaceae Pottiaceae Moraceae Source of rbcL DNA Chloroplast sequences are essentially absent from angiosperm pollen (Blanchard & Schmidt 1995) The majority of the plant sequences must originate from locally deposited seeds, or somatic tissue such as the observed fine rootlets mtDNA 16S (88-95 bp) Vombatus ursinus S1 AJ304826 Rattus norvegicus AJ428514 63 Volemys kikuchii AF348082 Dicrostonyx groenlandicus 68 AY261992 clone (19 kyr) - permafrost sediment 72 Lemmus lemmus AY261993 95 clone (19 kyr) - permafrost sediment clone (19 kyr) - permafrost sediment clone (19 kyr) - permafrost sediment Oryctolagus cuniculus AJ001588 Lepus europaeus 75 100 AJ421471 2 clones (10.4 kyr) - permafrost sediment Capricornis crispus U87029 clone (19 kyr) - permafrost sediment 100 96 Ovibos moschatus U87027 Homo sapiens Loxodonta africana 99 AF382013 AF039436 Loxodonta africana AJ224821 clone (19 kyr) - permafrost sediment 54 97 clone (10.4 kyr) - permafrost sediment 87 Mammuthus primigenius AF154865 Mammuthus primigenius Z54098 9 clones (10.4, 19, and 20-30 kyr) - permafrost sediment clone (10.4 kyr) - permafrost sediment Dugong dugong AY075116 Rhinoceros unicornis X97336 92 Ceratotherium simum Y07726 Equus hemionus (Pleistocene) S65410 93 Equus hemionus 77 Z18645 Equus asinus X97337 58 clone (19 kyr) - permafrost sediment clone (19 kyr) - permafrost sediment 70 clone (19 kyr) - permafrost sediment clone (19 kyr) - permafrost sediment Equus caballus X79547 8 clones (19 kyr) - permafrost sediment Equus sp. (Pleistocene) 0.1 X86215 Control mtDNA region (124-129bp) Vombatus ursinus S2 AJ304826 Homo sapiens AF347015 Ozotoceros bezoarticus AF012572 clone (10.4 kyr) - permafrost sediment 98 100 67 Rangifer tarandus groenlandicus AF096441 Capricornis crispus AB055699 clone (19 kyr) - permafrost sediment 74 Ovibos moschatus 94 AY261987 Bos taurus AB065127 Bison spp. (Pleistocene) CRS-DY-42 AY261988 83 clone (19 kyr) - permafrost sediment 78 70 Bison spp. (Pleistocene) CRS-SY-2 AF538947 clone (20-30 kyr) - permafrost sediment 96 clone (10.4 kyr) - permafrost sediment clone (10.4 kyr) - permafrost sediment 0.1 mtDNA cyt b sequences (A, 98 bp and B, 229 bp) Dugong dugong S3A AY075116 Dugong dugong S3B AY075116 Loxodonta cyclotis Elephas maximus AF132526 100 AF132527 78 Loxodonta cyclotis AF132529 Elephas maximus Elephas maximus D50844 AF132526 Loxodonta cyclotis 90 Elephas maximus AF132527 Y13886 79 Loxodonta cyclotis clone (8-12 kyr) - permafrost sediment 59 AF132528 clone (20-30 kyr) - permafrost sediment Mammuthus primigenius 64 D50842 94 63 clone (8-12 kyr) - permafrost sediment Mammuthus primigenius AF154864 clone (8-12 kyr) - permafrost sediment clone (20-30 kyr) - permafrost sediment 3 clones (8-12 kyr) - permafrost sediment clone (10.4 kyr) - permafrost sediment 65 Mammuthus primigenius D83047 0.1 clone (8-12 kyr) - permafrost sediment Mammuthus primigenius D50842 0.1 Control mtDNA region (202-203 bp) clone (600 yr) Clutha River - cave sediment S4A 68 99 clone (600 yr) Clutha River - cave sediment Pachyornis elephantopus AY261990 Euryapteryx curtus AY261989 clone (1-3 kyr) Tokerau Beach - sediment inside bone 60 88 clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone 50 clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone clone (1-3 kyr) Tokerau Beach - sediment inside bone Megalapteryx didinus AY261991 clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment 93 92 100 clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment clone (600 yr) Clutha River - cave sediment 0.1 Control mtDNA region 234 bp S4B 100 Nymphicus hollandicus Cacatua roseicapilla 56 Nestor notabilis 100 Nestor meridionalis Strigops habroptilus Psephotus haematonotus Barnardius barnardi 63 81 68 66 94 Barnardius zonarius Psephotus varius Northiella haematogaster Cyanoramphus novaezelandiae 100 clone (600 yr Clutha River - cave sediment 0 .1 Source of Animal mtDNA Unknown Dung is a possibility? From Poinar et al. (2001) Plant Sequence Diversity (>96% similarity) Frequency; Herbs, Shrubs, Mosses Conclusions Diverse ancient DNA directly from soil (even in the absence of obvious microfossils) Change in plant diversity (following climate change) Change in herb/shrub dominance Change in Poaceae and Cyperaceae frequency (Pleistocene/Holocene boundary) Megafauna present during LGM DNA better preserved in permafrost than cave sediments Clutha River vegetation cover similar to prehuman occupation of NZ even at 600 kyr Perspectives Combined with pollen records and fossil bones revealing Paleobiological change Genetic information from archaeological records even in the absence of macrofossil evidence? DNA damage analysis • DNA in fossil remains is known to be degraded • Unknown to a large extent what types of damages accumulate • And especially what types of damages prevents amplification of DNA DNA breaks A H2N N O - P N O Deamination of Cytosine N HO N O NH2 O N O O - P O O O N Clevage of the phosphor backbone O O N Clevage by depurination and ß-elimination NH O O - P N O NH2 N O O O CH3 NH O O - P O O O OH N O Interstrand Crosslinks (Denaturation experiment) B 1.0 0.8 fICL = 0.43 + 0.49 (1 - e-0.0055 t) DNA fICL Protein 0.6 R2 = 0.993 fICL = 0.43 + 0.57(1-e-0.0034 · t) k = 0.0034 kyr-1 = 1.1 x 10-13 s-1 0.4 r2 = 0.9684 0.2 0.0 DNA 0 100 200 300 Age (kyr) 400 500 600 Rate constants Lesion type Time flesion flesion (kyr) DSB 10.4 300-400 ICL 10.4 T½ (sec-1) (yr) < 3.7 x 10-17 > 8 x 108 3.9 x 10-15 5.5x106 1.1 x 10-13 2.0 x 105 0.00013† 0.00037† 10.4 400-600 SSB k* 0.00053‡ 19 0.0016‡ 10.4 0.44 19 0.49 300-400 0.85 400-600 0.87 Conclusion • DNA in permanently frozen sediments are degraded by alkylation and hydrolysis, producing single and double stranded breaks as well as interstrand crosslinks • ICL accumulate more rapidly than SSB • SSB is generated by depurination • The observed damage pattern indicate that DNA degradation result from spontaneous rather than exogenous processes. Perspectives Repair of ancient DNA Possible dating of sampels Determination of spontaneous accumulation of DNA damages in cells The work has been done by: • • • • • • • • • • • • • Alan Cooper Anders J. Hansen Beth Shapiro Carsten Wiuf David A. Gilichinsky David Mitchell Eske Willerslev Jonas Binladen Lakshmi Paniker M. Thomas P. Gilbert Mike Bunce Regin Rønn Tina B. Brand Department of Evolutionary Biology, Zoological Institute, University of Copenhagen, Denmark Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, University of Oxford, UK Department of Statistics, University of Oxford, UK Soil Cryology Laboratory, Institute for PhysicoChemical and Biological Problems in Soil Science, Russian Academy of Sciences, Russsia Department of Cariogenese, MDAnderson Cancer institute, UT Beringia Beringia Megafauna of the Late Pleistocene Arctic Dessert or Steppe? Why Megafauna got Extinct? Traditional Approach Pollen analyses Problems: Variation in influx rates, long distance dispersal, no account for vegetative growth, problems of taxonomic identification Vertebrate fossils Problems: Different preservation, dating beyond carbon age Thoughts… Is it possible to address the paleoenvironment of Beringia by obtaining DNA directly from the permafrost sediments even in the absence of macrofossils? Cold conditions is critical for the longterm preservation of DNA (Smith et al. 2002). If plant or animal DNA accumulates in sediments permafrost must provide ideal preservation conditions