Transcript Folie 1
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece Layout • Introduction • Cosmic neutrino fluxes • KM3NeT TDR configuration • Sensitivity to diffuse neutrino fluxes • Summary and outlook Introduction • • Unobserved neutrino sources will build up diffuse fluxes of cosmic neutrinos Propagation of UHECR trough CMBR is producing the cosmogenic neutrino flux ( GZK neutrinos) Diffuse neutrino fluxes considered in in KM3NeT: Extragalactic flux from unresolved sources Cosmogenic (GZK) flux Galactic flux R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Cosmic neutrinos vs. atmospheric neutrinos • Largest neutrino diffuse flux at Earth g atmospheric neutrino flux ( background for cosmic neutrinos ) cosmic neutrinos Energy spectra Composition ne:nm:nt ~ E-2 expected GZK spectra (En > ~ 107 GeV ) 1:1:1 ( expected ) Atmospheric neutrinos ~ E-3.7 ( En < 105-106GeV) measured ~ E-2.7 (En > 105-106 GeV) ( prompt flux, expected) mostly nm, low ne, negligble nt ( measured nm ) Neutrinos simulated in the KM3NeT telescope: - Currently only nmN (CC) events with m-track is considered - Shower type events nN( NC) not included ( low effective area, but good energy resolution ) Atmospheric neutrino flux: Bartol model + rqpm model for ‘prompt flux’ R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. KM3NeT Configurations PMT KM3NeT R. Shanidze, T. Seitz OM St. DU St. xPMT. (DU) 8” 3x2 20 127 2540 3” 1x31 20 300 6000 PMTs Dist(m) Vol. (Tot.) St./DU (km3) 15240 40/180 2.6 186000 30/130 3.1 VLVnT-09, Athens, 15 October, 2009. Event rates and diffuse flux sensitivity N - event rates in the neutrino telescope: a convolution of : - neutrino flux F(En) - neutrino effective are A(En) Full simulations include – event reconstruction, “ quality cuts”, energy estimator, cuts for the background reduction. ( different for different analysis) Sensitivity to the diffuse cosmic neutrino flux: obtained for the case when the detected events are close to expectations form the atmospheric neutrino flux. Same method is used as in a point source sensitivity study: Feldman-Cousins statistics and MRF (model rejection factor) R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Neutrino Energy Estimator Neutrino energy is estimated From the detected Cherenkov photons. Number of hits in the reconstructed m-track Could be used a simple Energy estimator. Expected energy resolution for neutrinos is ~ 0.5 x log En Mean number of hits in the reconstructed m-track as function of neutrino energy for the tower and string configurations. R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Effective are for KM3NeT tower configuration KM3NeT TDR detector (Catania, optimazed for point sources ) CDR detector (KM3Net CDR, p. 238 ) Neutrino effective area obtained for KM3NeT tower configuration for different simulations ( Catania, Erlangen) Parameterization obtained for KM3NeT CDR configuration g blue curve. Dotted histogram: c neutrino events with Nhit> 200 in the reconstructed m-track. R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Effective area for string configurations Neutrino effective area obtained for KM3NeT string configurations from different simulations in Erlangen: simulations with SeaTray: (310 DU detector) and 300 DU detector with the modifies ANTARES software Detector with 310 strings: 130 m, 100 m(scan)) ( Seatray simulations) En [GeV] Dashed histogram: neutrino events with Nhit> 200 in the reconstructed m-track. Diffuse flux limit Diffuse flux limit obtained for the KM3NeT detector ( configuration with 127 DU of “flexible towers”) KM3NeT limit: ( 1 year of explosure ) 5 x 10-9 GeV cm2s-1sr-1 together with results from AMANDA an expectations form ANTARES and IceCube R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Diffuse neutrino flux from inner Galaxy Neutrino flux from inner Galaxy g theoretical calculations based on VHE-g observations Inner Galaxy: -40o<l<40o , -2o < b < 2o W ≈ 0.97 sr, visible from Mediterranean NT. Calculations for the KM3NeT CDR configuration ( Based on MILAGRO data) A .M. taylor et al., Astropart. Phys.30(2008),180 (1) (2) where E* = 80 GeV, a=2, a+d=2.7, Ecut=1(5) PeV R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Galactic neutrino rates Event rates in the KM3NeT neutrino telescope from “inner galactic” neutrinos and atmospheric neutrinos for 1 year: En > 10 TeV: 9 (eqn.1), 10 (eqn. 2, Ecut=1 PeV ) 15 (eqn. 2, Ecut=5 PeV ) 28 (atm. Neutrinos) En>20 TeV: 10/10 events for most optimistic case/ atm-n. To be (re)calculated for current KM3NeT configuration(s) including: - reconstruction efficiency. - energy estimator atm-n background can be obtained from regions similar extension R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Cosmogenic neutrino flux Above Ep>1019.6 GeV ( GZK cut-of) for sources with d > 50Mpc p gCMB g D g np+ / ppo GZK cut-of in UHECR g cosmogenic neutrino flux . GZK cut-of confirmed: HIRES: Phys. Rev. Lett., 100, 2008, PAO: Phys. Rev. Lett. 101, 2008, propagation (Mpc): 10, 20, 50, 100, 200. Cosmogenic neutrino flux g guaranteed but unknown. Calculations with “SOPHIA” MC : R. Engel, D. Seckel and T. Stanev, Phys.Rev.D64 (2009) 093010 Event rate expected in KM3NeT very low g special study is necessary Including shower events. R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009. Summary and Outlook • • The largest instrumented volume of the detector (above 2 km3 in the current configuration) makes KM3NeT telescope the most sensitive tool for a search for diffuse fluxes of cosmic neutrinos. KM3NeT is sensitive to different fluxes of cosmic neutrinos: - For extragalactic E-2 flux, for 1 year of data taking, sensitivity limit (90% C.L.) : < 5.2 x 10-9 GeV cm-2 s-1 sr-1 - In the favorable scenario same rate of 10 events/year expected for Galactic and atmospheric neutrinos above 20 TeV. ( To be confirmed with full simulations ) - For the neutrinos with En> ~107-108 GeV (cosmogenic neutrinos) event reconstruction is not optimized. • KM3NeT reconstruction could be improved g improved sensitivities R. Shanidze, T. Seitz VLVnT-09, Athens, 15 October, 2009.