Transcript Slide 1
Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton • Bang-bang decoupling 31P nuclear spins • Low-decoherence electron-spin qubits and global 1/f noise • Dynamical decoupling of the qubits – Periodic pulse sequences – Concatenated pulse sequences • Summary Experiments • 2-pulse Hahn echo /2 Pulses (|0 + |1) FID – T2* Signal Echo T (|0 + |1) • Decoupling /2 Pulses (|0 + |1) Signal (|0 + |1) T Echo Dynamical Decoupling • Replace single -pulse with sequence of pulses – Refocus spins rapidly (< noise correlation time) – “Bang-bang” – fast strong pulses (or 2 different spins) – CP (Carr-Purcell) – periodic -pulses • x/2--X-2-X-2-…-X--echo – CPMG (Carr-Purcell-Meiboom-Gill) – periodic -pulses • x/2--Y-2-Y-2-…-Y--echo – Aperiodic pulse sequences – concatenated sequences • Khodjasteh, Lidar, PRL 95, 180501 (2005); PRA 75, 062310 (2007). – x/2-(pn-1-X-pn-1-Z-pn-1-X-pn-1-Z)--X--echo with Z=XY • Yao, Liu, Sham, PRL 98, 077602 (2007). – concatenated CPMG – x/2-(pn-1-Y-pn-1-pn-1-Y-pn-1)--Y--echo • Experimental pulses ~ 1s (for -pulse) – Power ~ 1/(pulse length)2 Energy/pulse ~ power1/2 The Qubits: 31P 31P donors in Si donor: Electron spin (S) = ½ and Nuclear spin (I) = ½ ↓e,↓n X-band: magnetic field = 0.35 T w1 ~ 9.7 GHz ≠ w2 ~ 9.8 GHz ↓e,↑n w1 rf1 ↑e,↓n |2 w2 ↑e,↑n rf1 ~ 52 MHz ≠ rf2 ~ 65 MHz |3 |1 rf2 |0 • Blue (microwave) transitions are usual ESR • All transitions can be selectively addressed Bang-Bang control Fast nuclear refocusing donor: S = ½ and I = ½ ↓e,↓n |3 ↓e,↑n |2 w1 Free nuclear spin nutation 0.0 2 rotation |1 ↑e,↑n rf1 ↑e,↓n i = a|0 + b|1 (A) 2 |0 f = a|0 - b|1 Nuclear refocusing pulse would be ~10 s but electron pulse ~30 ns Nuclear Polarization 31P 0.1 0.1 0.4 0.2 0.3 0.4 Two bursts of 2 mw pulses (C) 0.0 0.3 One burst of 2 mw pulses (B) 0.0 0.2 0.1 0.2 Time (ms) 0.3 0.4 Electron spin qubits Doping ~1015/cm3 Isotopically purified 28Si:P 7K electron T1 ~ 100’s milliseconds 7K electron T2 ~ 60 milliseconds (extrapolating to ~single donor) 103 T1, T2 (sec) • • • • (Feher et al, 1958) 102 T1 101 T2 T2 T1 100 “real” T2 10-1 28Si:P 9.767 GHz 28Si:P 9.767 GHz Si:P 16.44 GHz x 10-2 (Gordon, 28Si, 1958) 10-3 T2 10-4 10-5 10-6 10-7 0 2 4 6 8 10 12 14 Temperature (K) 16 18 20 22 Noise in electron spin echo signals 2 Decoherence Spin echo signals Spin echo decay 1.5 1.0 Single-pulse T2 = 2 msec 0.5 1 In-phase 0 -1 Out-of-phase -2 -3 0 averaged 0.0 0 2 4 T (msec) 2 4 6 8 T (msec) 6 8 Signal transferred: in-phase out-of-phase • Must use single pulses to measure decoherence About 100x sensitivity penalty B-field noise 0.01 1/2 Noise (Gauss/Hz ) 1E-3 Measure noise voltage induced in coil 1E-4 1E-5 1E-6 1E-7 1E-8 10 100 1000 Frequency (Hz) Origin of noise unclear Background field in lab? Domains in the iron? Essentially 1/f 10000 100000 Microwave Field Inhomogeneity Vertical B-field Sapphire cylinder Metal Wall Sapphire * * * * Carr-Purcell (CP) sequenceCP x/2--X-2-X-2-…-X--echo * * * * * * * * * 0.0 0.2 0.4 Time (ms) 0.6 0.8 Periodic (standard) CPMG x/2--Y-2-Y-2-…-Y--echo Self correcting sequence 2 pulse Microwave signal pulse * * * * * pulse * * * * * * * * * * * * * * * 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Time (ms) Coherence after N pulses Standard CPMG Echo Intensity 1.0 T2 = 8.5ms 1 0.5 4 16 64 0.0 0 4 8 12 Time (ms) 16 20 24 Concatenated CPMG 2 pulse pulse pulse Microwave signal * * 0.0 * 0.5 * * 1.0 Time (ms) * 1.5 * 2.0 Coherence vs. concatenation level Concatenated CPMG l = 2 (2 pulses) l = 4 (10 pulses) l = 6 (42 pulses) Echo Intensity 1.0 0.5 T2 = 5.8ms 0.0 0 2 4 6 8 10 Time (ms) 12 14 Concatenated and periodic CPMG Echo Intensity 1.0 Concatenated CPMG 42 pulses 0.5 Periodic CPMG 32 pulses 0.0 0 4 8 12 16 Time (ms) 20 24 28 Fault-Tolerant Dynamical Decoupling • x/2-(pn-1-X-pn-1-X-Y-pn-1-X-pn-1-X-Y)--X--echo • Not obvious that it self-corrects * Concatenated XZXZ (p2) * CPMG 0.0 0.2 0.4 Time (ms) 0.6 0.8 Coherence vs. concatenation level Concatenated XZXZ pulse sequence p1 (4 pulses) 1.5 Echo Intensity p2 (14 pulses) p3 (60 pulses) 1.0 p4 (242 pulses) p5 (972 pulses) 0.5 T2 = 15ms 0.0 0 5 10 15 20 25 30 Time (ms) 35 40 45 50 Sanity check: collapse adjacent pulses • Effect of combining pairs of adjacent pulses Concatenated XZXZ Echo Decay – Ex. Z-Z I – nth level concatenation without combining 2*4n – 2 = 510 for n=4 – nth level concatenation with combined pulses = 306 for n=4 p4, with all pulses preserved p4, consecutive pulses are combined 15 10 T2 = 11 ms 5 0 0 5 10 15 Time (ms) 20 25 Sanity check: white noise Si:P at 10 K Relaxation Decay 1 T2 = 330 s T1 = 420 s 0.1 XZXZ(p3) = 410 s 0 1 Time (ms) 2 Summary • Dynamical decoupling can work for electron spins • Through the hyperfine interaction with the electron can generate very fast bang-bang control of nucleus • CPMG preserves initial x/2 with fewest pulses – But does not deal with pulse errors for y/2 – CPMG cannot protect arbitrary state • Concatenated CPMG does no better • Can utilize concatenated XZXZ sequence out to at least 1000 pulses – Situation with y/2 initial states is more complex • Not clear fidelity improves monotonically with level But much better than CP • May need to combine XZXZ with composite pulses