Transcript Slide 1
Quantum computing and qubit decoherence Semion Saikin NSF Center for Quantum Device Technology Clarkson University Outline • Quantum computation. Modeling of quantum systems Applications Bit & Qubit Entanglement Stability criteria Physical realization of a qubit Decoherence Measure of Decoherence • Donor electron spin qubit in Si:P. Effect of nuclear spin bath. Structure Application for Quantum computation Sources of decoherence Spin Hamiltonian Hyperfine interaction Energy level structure (high magnetic field) Effects of nuclear spin bath (low field) Effects of nuclear spin bath (high field) Hyperfine modulations of an electron spin qubit • Conclusions. • Prospects for future. 2 Quantum computation Modeling of quantum systems i H t 2 2 H V ( x) 2 2m x E0 E1 ... En 0 x 1 x ... n x 1 particle – n equations: H 00 H H10 ... L particles – nL equations! H 01 ... 0 H11 ... 1 ... ... ... R. Feynman, Inter. Jour. Theor. Phys. 21, 467 (1982) 3 Quantum computation Applications • Modeling of quantum systems Pharmaceutical industry Nanoelectronics • Quantum search algorithm L. Grover (1995) • Factorization of large integer numbers P. Shor (1994) RSA Code: Military, Banking • Quantum Cryptography Process optimization: Industry Military Bob Alice Eve Quantum computation Bit & Qubit • Two states classical bit • Two levels quantum system (qubit) Polarization vector: 1 0 S=(Sφ Sθ SR=const) Density matrix: 11 21 • Equalities ≡ 1 0 1 0 0 0 ≡ 0 0 1 1 12 22 • Single qubit operations 0 0 (t ) eiHt / (0)eiHt / 5 Quantum computation Entanglement + Non-separable quantum states: = + ≠ + ≠ 0 0 0 1 0 A1B 1A0B 1 0 1 1 2 0 1 1 2 0 0 0 0 0 0 0 6 Quantum computation Stability criteria • The machine should have a collection of bits. (~103 qubits) • It should be possible to set all the memory bits to 0 before the start of each computation. • The error rate should be sufficiently low. (less 10-4 ) • It must be possible to perform elementary logic operations between pairs of bits. • Reliable output of the final result should be possible. 0 0 0 0 I n p u t Unitary transformation O u t p u t D. P. DiVincenzo, G. Burkard, D. Loss, E. V. Sukhorukov, cond-mat/9911245 Classical control 7 QC Roadmap http://qist.lanl.gov/ Quantum computation Physical realization of a qubit • Ion traps and neutral atoms • Semiconductor charge qubit Single QD Double QD E2 e E1 E0 • Photon based QC e E1 0 E0 0 1 P 1 • Spin qubit • Superconducting qubit Cooper pair box SQUID Nuclear spin (liquid state NMR, solid state NMR) I Electron spin S i N pairs - 0 N+1 pairs - 1 8 Quantum computation Decoherence. Interaction with macroscopic environment. Markov process T1 T2 concept Non-exponential decay 11 22 ~ et T 1 12 ~ et T 2 t 0 t Quantum computation Measure of Decoherence • Basis independent. • Additive for a few qubits. • Applicable for any timescale and complicated system dynamics. S ideal real ideal max 1 , 2 ... S real 11 21 ~ Sreal Sideal 12 22 A. Fedorov, L. Fedichkin, V. Privman, cond-mat/0401248 10 Donor electron spin in Si:P Structure Si atom (group-IV) Diamond crystal structure Natural Silicon: – 92% – 4.7% 30Si – 3.1% 28Si 29Si 5.43Å I=1/2 31P electron spin (T=4.2K) T1~ min T2~ msecs P atom (group-V) + = b ≈ 15 Å a ≈ 25 Å Natural Phosphorus: 31P – 100% I=1/2 In the effective mass approximation electron wave function is s-like: 1 F (r ) e ab ( x 2 y 2 ) / a 2 z 2 / b2 11 Donor electron spin in Si:P Application for QC A - gate Bohr Radius: Si: a ≈ 25 Å b ≈ 15 Å J - gate Ge: a ≈ 64 Å b ≈ 24 Å SixGe1x Si Si1xGex B.E.Kane, Nature 393 133 (1998) 31P donor Qubit – nuclear spin Qubit-qubit inteaction – electron spin S1 HEx J - gate S2 R.Vrijen, E.Yablonovitch, K.Wang, H.W.Jiang, A.Balandin, V.Roychowdhury, T.Mor, D.DiVincenzo, Phys. Rev. A 62, 012306 (2000) 31P donor Qubit – electron spin Qubit-qubit inteaction – electron spin HHf A - gate S1 HEx S2 I2 I1 Qubit 1 Qubit 2 Qubit 1 Qubit 2 12 Donor electron spin in Si:P Sources of decoherence • Interaction with phonons D. Mozyrsky, Sh. Kogan, V. N. Gorshkov, G. P. Berman Phys. Rev. B 65, 245213 (2002) • Gate errors X.Hu, S.Das Sarma, cond-mat/0207457 • Interaction with 29Si nuclear spins Theory I.A.Merkulov, Al.L.Efros, M.Rosen, Phys. Rev. B 65, 205309 (2002) S.Saikin, D.Mozyrsky, V.Privman, Nano Letters 2, 651 (2002) R. De Sousa, S.Das Sarma, Phys. Rev. B 68, 115322 (2003) S.Saikin, L. Fedichkin, Phys. Rev. B 67, 161302(R) (2003) J.Schliemann, A.Khaetskii, D.Loss, J. Phys., Condens. Matter 15, R1809 (2003) Experiments A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, Phys. Rev. B 68, 193207 (2003) M. Fanciulli, P. Hofer, A. Ponti, Physica B 340–342, 895 (2003) E. Abe, K. M. Itoh, J. Isoya S. Yamasaki, cond-mat/0402152 (2004) 13 Donor electron spin in Si:P Spin Hamiltonian 28Si HSpin H Ze H Znucl (i ) H Hf (i ) H Dip (i, j ) i H i j i 31P e29Si Effect of external field Electronnuclei interaction Electron spin Zeeman term: Effective Bohr radius ~ 20-25 Å Lattice constant = 5.43 Å Nuclear spin Zeeman term: Nucleinuclei interaction H Ze gHS H Znulc (i ) i HI In a natural Si crystal the donor electron interacts with ~ 80 nuclei of 29Si 29Si System of nuclear spins can be considered as a spin bath Hyperfine electron-nuclear spin interaction: Dipole-dipole nuclear spin interaction: HHf (i) SAi Ii HDip (i, j) Ii DijI j 14 Donor electron spin in Si:P Hyperfine interaction Contact interaction: Dipole-dipole interaction: e- HCont ASI H Dip 29Si Hyperfine interaction: H Hf S x Sy Axx S z Ayx A zx μ eμ n 3(μ er )( μ nr ) r3 r5 Axy Ayy Azy Axz I x Ayz I y Azz I z Approximations: Contact interaction only: Axx A 0 0 0 Ayy 0 0 0 Azz Contact interaction High magnetic field High magnetic field 0 A 0 A zx 0 0 Azy 0 0 Azz 0 0 A 0 0 0 0 0 0 Azz 15 Donor electron spin in Si:P Energy level structure (high magnetic field) H H Ze gH z Sz H ZP PH z I zP - 31P electron spin - 31P nuclear spin - 29Si nuclear spin H HfP AzzP Sz I zP H ZSi1 Si1 H Hf … 16 Axx A 0 0 Donor electron spin in Si:P Effects of nuclear spin bath (low field) 0 Ayy 0 0 0 Azz gSi ~ ( S I Si S I Si ) gH P H Ze ~ H z 20 HP const 42Oe 1 et / T -1 1/T [s ] 15 Si const 3Oe 10 5 S. Saikin, D. Mozyrsiky and V. Privman, Nano Lett. 2, 651-655 (2002) 0 15 20 Magnetic field [Oe] 25 17 0 A 0 A zx Donor electron spin in Si:P Effects of nuclear spin bath (high field) (a) S=“” (b) S=“” 0 0 Azy 0 0 Azz e- “ - pulse” + ~ H x (t ) e- Electron spin system Hz Hz Heff Nuclear spin system Heff Ik 28Si H 31P Hz Ik 29Si 29Si H 31P 18 Donor electron spin in Si:P Hyperfine modulations of an electron spin qubit 0.008 0.006 |||| 0.004 0.002 0.000 0.0 0.5 1.0 t (sec) 1.5 2.0 0.5 1.0 t (sec) 1.5 2.0 0.5 1.0 t (sec) 1.5 2.0 -5 3.0x10 -5 2.5x10 -5 2.0x10 -5 1.5x10 -5 1.0x10 t Threshold value of the magnetic field for a fault tolerant 31P electron spin qubit: max ~ H 2 H th 9T S. Saikin and L. Fedichkin, Phys. Rev. B 67, article 161302(R), 1-4 (2003) -6 5.0x10 0.0 0.0 4.0x10 3.0x10 2.0x10 1.0x10 -5 -5 -5 -5 0.0 0.0 19 Donor electron spin in Si:P Spin echo modulations. Experiment. Spin echo: A() Hx Mx M. Fanciulli, P. Hofer, A. Ponti Physica B 340–342, 895 (2003) Si-nat 0 2 t E. Abe, K. M. Itoh, J. Isoya S. Yamasaki, cond-mat/0402152 T = 10 K H || [0 0 1] 20 Conclusions • Effects of nuclear spin bath on decoherence of an electron spin qubit in a Si:P system has been studied. • A new measure of decoherence processes has been applied. • At low field regime coherence of a qubit exponentially decay with a characteristic time T ~ 0.1 sec. • At high magnetic field regime quantum operations with a qubit produce deviations of a qubit state from ideal one. The characteristic time of these processes is T ~ 0.1 sec. • The threshold value of an external magnetic field required for fault-tolerant quantum computation is Hext ~ 9 Tesla. 21 Prospects for future • Spin diffusion A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring Phys. Rev. B 68, 193207 (2003) • Control for spin-spin coupling in solids • Initial drop of spin coherence M. Fanciulli, P. Hofer, A. Ponti Physica B 340–342, 895 (2003) Developing of error avoiding methods for spin qubits in solids. S. Barrett’s Group, Yale M. Fanciulli’s Group, MDM Laboratory, Italy 22 NSF Center for Quantum Device Technology PI V. Privman Modeling of Quantum Coherence for Evaluation of QC Designs and Measurement Schemes Task: Model the environmental effects and approximate the density matrix Task: Identify measures of decoherence and establish their approximate “additivity” for several qubits Task: Apply to 2DEG and other QC designs; improve or discard QC designs and measurement schemes Use perturbative Markovian schemes Relaxation time scales: T1, T2, and additivity of rates QHE QC P in Si QC Q-dot QC New short-time approximations (De)coherence in Transport “Deviation” measures of decoherence and their additivity QHE QC P in Si QC Q-dot QC Measurement by charge carriers How to measure spin and charge qubits Coherent spin transport Spin polarization relaxation in devices / spintronics Improve and finalize solid-state QC designs once the single-qubit measurement methodology is established 23