The Ideal Electron Gas Thermometer

Download Report

Transcript The Ideal Electron Gas Thermometer

The Ideal Electron Gas
Thermometer
Lafe Spietz, K.W. Lehnert, I. Siddiqi,
R.J. Schoelkopf
Department of Applied Physics, Yale University
Thanks to:
Michel Devoret and Daniel E. Prober
Introduction
• Johnson-Schottky transition of the noise in
tunnel junctions
• Relates T and V using only e and kB
 primary thermometer
• Demonstrate operation from
T=0.26 K to 300K
Fundamental Noise Sources
Thermal(Johnson) Noise
4 k BT  A2 
SI ( f ) 
 Hz 
R  
• Frequency-independent
• Temperature-dependent
• Used for thermometry
Shot(Schottky) Noise
SI ( f )  2eI
 A2 
 Hz 


• Frequency-independent
• Temperature independent
Conduction in Tunnel Junctions
I
M I M
V
G
I l  r   f l (1  f r )dE
e
G
I r l   f r (1  f l )dE
e
Difference gives current:
Fermi functions
I  Il r  I r l  GV
Assume: Tunneling amplitudes and
D.O.S. independent of energy
Fermi distribution of electrons
Conductance (G)
is constant
Thermal-Shot Noise of a Tunnel
Junction*
Sum gives noise:
SI ( f )  2e( Il r  I r l )
 eV 
S I ( f )  2eGV coth 

 2kBT 
I  GV
*D. Rogovin and D.J. Scalpino, Ann Phys. 86,1 (1974)
Thermal-Shot Noise of a Tunnel
Junction
2eGV=2eI
Shot Noise
Johnson-Schottky
Transition Region
eV~kBT
4kBT
Thermal Noise
R
 eV 
S I ( f )  2GV coth 

 2kBT 
Johnson-Schottky Transition:
Direct relationship between T and V
Tunnel Junction
(AFM image)
R=33 W
Area=10 mm2
Al-Al2O3-Al Junction
V+
I+
I-
V-
Experimental Setup:RF + DC
Measurement
Experimental Setup:
Pumped He Cryostat
Noise power vs. bias voltage:
High bandwidth:
hence fast
For  = 1 second,
8
B ~ 10 Hz
 noise
noise

2
B
~ 10
4
Self-Calibration Technique for
Thermometry
P = Gain*B( SIAmp+SI(V,T) )
Noise Versus Voltage

 eV  
eV
Fit = Gain  TNOISE +
Coth 

2k
2k
T
B
 B 

T=4.372 K
Tnoise=5.128 K,
Gain=29.57 mV/K
Universal Functional Form:
Agreement over three decades In temperature
Comparison With Secondary
Thermometers
Temperature Measurements
Over Time
Tfit
TRhFe
Tnoise
Gain
5.5
75.0
74.5
5.0
4.5
73.5
4.0
73.0
0
2
4
6
8
Time [hours]
10
-6
74.0
Gain [10 V/K]
T and Tnoise(K)
6.0
Merits Vs. Systematics
Merits
Systematics
• Fast and self-calibrating
• I-V curve nonlinearities
• Primary
• Amplifier and diode
• Wide T range
nonlinearities
(mK to room temperature)
• No B-dependence
• Compact electronic sensor
• Frequency dependence*
• Self-heating
• Possibility to relate T to
frequency!*
*R. J. Schoelkopf et al., Phys Rev. Lett. 80, 2437 (1998)
Summary
• Ideal Electron Gas Thermometer based on
Johnson-Schottky transition of noise in a
tunnel junction (thermal-shot noise.)
• Fast, accurate, primary thermometer
• Works over a wide temperature range
• Relates T to V using only e and kb
applications for metrology
Diode Nonlinearity
Vdiode = GP + bG2P2
b= -3.1 V-1
1mV => 3x10-3 fractional error
Conductance
R=31.22Ohms
More Conductance
2
3
1
4