Transcript Folie 1

Design Considerations
of table-top FELs
DESY, June 20; recap of FLS 2006, May 15, 2006
LMU: F. Grüner, U. Schramm, S. Becker, R. Sousa, T. Eichner, D. Habs
MPQ: S. Karsch, M. Geissler, L. Veisz, J. Meyer-ter-Vehn, F. Krausz
UCLA: S. Reiche
• laser-plasma accelerators
• principal possibility of table-top FELs
• possible VUV and X-ray scenarios
• new experimental status
• critical points review
• cooperation with DESY…
Laser-Plasma accelerators:
“bubble acceleration”
TW laser,
5-50 fs
electron bunch:
e.g. 170 MeV (LOA),
1.2 GeV (Berkeley)
M. Geissler PIC code 5fs, a=5
Discharge capillary
~4 cm
300 µm
gas-filled capillary
electrodes
year
laser pulse Pulse
energy
length
electron
energy
energy
spread
divergence
2004
0.36 J
40 fs
86 MeV
2%
3 mrad
2006*
1.3 J
33 fs
1.2 GeVLeemans
< 2%
1.6 mrad
laser-plasma* presented at Anomalous Absorpt. Conf., June 6, 2006;
submitted to Science
acceleration
MPQ: since two weeks 0.35 J in 37 fs, soon 1-2 J
future (~2009): 5 J, 5 fs (=1 PW), 1 kHz
Improvement by capillaries
de-phasing
• discharge introduces parabolic electron density
• laser guiding beyond Rayleigh length → higher energies
• de-phasing: reducing energy spread
• ion-channel: reducing electron beam diameter and divergence
• possible scenario: bubble turns into linear wakefield →
GeV- energies with ~0.1% energy spread
• started cooperation with Simon Hooker (Oxford)
Important feature: ultra-high current
typical length
scale = plasma
wavelength
~ 2 µm only!!
~ nC charge
laser pulse
~ 100 kA
Principal possibility for table-top FELs
simplest estimate: ideal 1d Pierce parameter (no energy spread,
emittance, diffraction, time-dependence)
current : few 100kA (classical: 5 kA)
und. period : few mm (class. few cm)
L gain , ideal 
1   I    u Au  
 
 

 



2    I A   2  x  
 beam diameter (optimal!)
2
u
4
3
XieMing
L gain ,real
 L gain , ideal  (1   )
L sat  15  L gain
1/ 3
Constraints for table-top FELs
saturation length (Xie Ming)
for SASE VUV FEL @ ~28nm
DESY flash (fs mode):
λu= 27 mm (462 MeV)
εn = 6 mm·mrad
MPQ (GENESIS)
ΔE/E = 0.04 %
λu= 3 mm (133 MeV)
εn = 1 mm·mrad
ΔE/E = 0.5 %
~ I
Λ (Xie Ming)
L gain , real  L gain , ideal  (1   )
 small :
keeping


!
 ,
 u
4 
1 / 3
2
• not only table-top size, but
 1 
4/3


Psat ~ 

I



u
sufficient output power:
1  
reduction in λu allows a reduction in γ, but needs ultra-high current
for keeping ρ and also saturation power large enough
!

Start-to-End Simulations
electron bunch
transport/
focusing/
filter
FEL undulator
laser
own 3d
PIC code
GPT,
Geant
CSRTrack, Spur;
GENESIS 1.3
A possible first VUV case
Parameter
DESY (flash, fs-mode)
MPQ
Current
1.3 kA
160 kA
Norm. Emitt.
(rms)
Energy
6 mm·mrad
1 mm·mrad
461.5 MeV
130 MeV
Energy spread
0.04 %
0.5 %
Wavelength
30 nm
25 nm
Pierce par.
0.0016
0.0117
Sat. Power
0.66 GW
5 GW
Sat. Length
19 m
45 cm
International competition and
a possible first table-top XFEL case
Parameter
Leemans (FEL2005 conf.)
MPQ (TT-XFEL)
Current
25 kA
160 kA
Norm. Emitt.
(rms)
1 mm·mrad
1 mm·mrad
Energy
1 GeV
0.9 – 1.2 GeV
Energy spread
1%
0.1 %
Und. Period
10 mm
1.5 – 3 mm
Wavelength
2 nm
0.25 nm
Und. length
4.7 m
3m
100 TW, 33 fs
1 PW, 5 fs
New Experimental Status
few days ago:
40 MeV electrons
undulator:
60 periods, 5 mm period, 1.6 mm gap
~1 T field on axis
Critical Points Review
• space charge influence due to ultra-dense bunches
- HOMDYN (L. Serafini): for 1 GeV correlated energy spread
0.5 %, no debunching
- GPT/CSRtrack runs (see next talk)
- simple analytical estimates in agreement with GPT
- linear energy chirp can be compensated with tapering
• transverse coherence
-
 

4
valid only for spontaneous source, here: gain guiding
- calculate growth rate of next higher mode with GENESIS
- transverse coherence important for focusing only?
• peak brilliance: 1032 @ 5 keV - comparable with LCLS!
(1012 phts/0.1%BW, θ=15µrad, σx=30µm, τ=10fs)
Cooperation with you…
• verify our GPT results with ASTRA
• verify entire feasibility study (publishing a joint paper)
• discuss beam features in detail (slice energy spread, etc.)
• for experiments: diagnostic methods (FROG)
• open questions, such as maximum photon energy
• what could you learn from us????