Transcript Slide 1
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus 08.02.2010 Beam Dynamics Meeting, DESY FLASH I parameters FLASH I layout is considered. But the results are equally applicable for FLASH II (SASE). short radiation wavelength ~ 1 high electron energy 2 In accelerator modules ACC1, ACC2,..., ACC6 the energy of the electrons is increased from 5 MeV (gun) to 1000 MeV (undulator). ~ 6.5 nm ACC39 In compressors the peak current I is increased from 1.5-50 A (gun) to 2500 A (undulator). short gain length Lg ~ 5/ 6 I 1 O( ) 2 E (for the optimal beta function) high peak current FLASH I parameters small emittance short gain length Lg ~ 5/ 6 I 1 O( ) 2 E (for the optimal beta function) small energy spread high peak current Electron beam properties for good lasing High peak current ~ 2500 A. Small slice emittance (0.4-1 mm). Small slice energy spread E (< 300 keV). High harmonic module in 2010 FLASH I parameters energy 1 GeV radiation wavelength ~ 6.5 nm ACC39 Only SASE mode of operation is investigated. Charge tuning (20-1000 pC) allows to tune - the radiation pulse energy (30-1400 mJ), - the pulse width FWHM (2-70 fs). FLASH I parameters Technical constrains 1.4 ACC39 r1 1.93 m 5.3 r2 16.8 m r56 0... -0.56 mm V1 150 MV V39 26 MV V2 360 MV How to provide (1) a well conditioned electron beam and (2) what are the properties of the radiation? (1) Self consistent beam dynamics simulations. (2) FEL simulations. FLASH I 3d simulation method (self-consistent) ACC39 W1 TM W3 2W1 TM 3W1 TM ASTRA ( tracking with space charge, DESY) CSRtrack (tracking through dipoles, DESY) ALICE (3D FEL code, DESY ) W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003) W3 - ACC39 wake (TESLA Report 2004-01, DESY, 2004) TM - transverse matching to the design optics (V2+, V.Balandin &N.Golubeva) FLASH I simulation methods (looking for working points) 1d analytical solution without collective effects (8 macroparameters -> 6 RF settings) initial guess 1d tracking with space charge and wakes ~ seconds (1 cpu) accelerator E1 s1 E0 s0 V cosks0 s1 s0 compressor E1 s1 E0 s0 s1 s0 s0 r56 t566 2 u5666 3 ~ 5 iterations quasi 3d tracking with all collective effects accelerator ~ 30 min (1 cpu) E1 s1 E0 s0 V cosks0 s1 s0 ~ 5 iterations matrix transport for x & y CSRtrack 3d tracking with all collective effects ~ 10 h (46 cpu-s) Astra CSRtrack final result FLASH I before and after upgrade rollover compression vs. linearized compression Q=0.5 nC ACC39 Q=1 nC ~ 1.5 kA slice emittance > 2mm ~2.5 kA slice emittance ~ 0.3 - 1mm Optics correction y [m] x [m] 35 50 30 new 40 25 30 20 V2+ 15 20 10 10 0 5 0 20 40 60 80 100 120 z [m] 20 40 60 80 100 a small transverse bunch size before the last dipole M.Dohlus, T. Limberg, Impact of optics on CSR-related emittance growth in bunch compressor chicanes, PAC 05, 2005 120 z [m] Working points (8 macroparameters) C11 s 1 (0) s C 1 E1 E2 r1 r2 s2 (0) s p1 sC 1 p2 2s C 1 ? s - particle position before BC2 s1 - particle position between BC2 and BC3 s2 - particle position after BC3 s=s1=s2=0 for the reference particle What is the optimal choice? Working points (8 macroparameters) What is the optimal choice? V1 150 MV E1 ? 5% reserve 2 8 E1 E0 0.95eV1 1 5MeV 0.95 150MeV 130MeV 9 3 E1 130MeV V2 360 MV 10% reserve E2 E1 eV2 0.9 450 MeV E2 450MeV E2 ? r1 ? r2 ? C ? C1 ? s C 1 ? 2s C 1 ? Working points (8 macroparameters) 1.4 r1 1.93 m - low compression in BC1 and high compression in BC2 - maximal energy chirp transported through BC1for the same C1 (it looses the voltage requirements on RF system ACC2/ACC3) r1 1.93m I 0 52A I f 2500A C If I0 48 E1 130MeV E 2 450MeV r1 ? r2 ? C ? C1 ? s C 1 ? 2s C 1 ? Working points (8 macroparameters) r2 m E1 130MeV 10 V39 26MV E 2 450MeV 9 p1 s C 1 0 8 p2 2s C 1 0 7 r1 1.93m V21 360MV V39 26MV 2 C1 2 C1 2.84 3 4 C 48 C1 ? s C 1 ? V21 360MV 6 r2 ? 5 C1 2s C 1 ? Working points (8 macroparameters) r2 m 10 V39 26MV 9 p1 s C 1 0 8 p2 2s C 1 0 7 V21 360MV r2 ? V21 360MV 2 3 4 5 working point C1 5% reserve r2 C 48 C1 2.84 s C 1 ? E2 E1 o 2 acos 22 max(V2 ) 0.95 r562 E 2 450MeV r1 1.93m V39 26MV 6 E1 130MeV 2s C 1 ? (C2 1)r561 1 C2 ((C1 1) E10 E20 g) LB sin r562 /(3LB 4LD ) gk V2 r562sin2 E20 r2 6m Working points (8 macroparameters) C 1(s) p1 0; p2 0 C 1(s) p1 0; p2 0 0.3 0.08 0.06 0.04 0.2 Too strong compression! Local maximum of compression! 0.1 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01 s[m] 0.1 0.04 0.06 E1 130MeV E 2 450MeV p2 0 0.01 r1 1.93m r2 6m C 48 C1 2.84 s C 1 ? 2s C 1 ? 0.02 s[m] Working points (8 macroparameters) p1 sC 1 0 Tolerances (10 % change of compression) 0.16 0.01 0.14 13 V1 0.12 deg V1 0.1 0.008 0.006 V13 0.004 V13 0.002 0 0 5000 10000 15000 0.08 1 0.06 deg 0.04 0 20000 2000 -2 V13C C V13 2 V1C C 2V1 V13 3 Ak sin(13 ) B cos(13 ) V1 Ak sin(1 ) B cos(1 ) r r r r A 561 562 k 561 562 V2 sin(2 ) E2 E1 E2 E1 6000 8000 10000 p2[m-2 ] p2[m ] working point 4000 working point C C 13 C 2 C 21 V13 B sin(13 ) 3 Ak cos(13 ) V1 B sin(1 ) Ak cos(1 ) t t k 2 r561 r562 B V2 cos(2 ) 2 1' 561 2' 562 C1 E1 E2 E2 E1 t r t r 2k 1' 561 562 2' 562 561 V2 sin(2 ) E2 E1 E1 E2 Working points (8 macroparameters) E1 130MeV 1.4 V3 26MV 1.3 E 2 450MeV r1 1.93m 1.2 V1 150MV 1.1 r2 6m C 48 C1 2.84 1 0.9 s C 1 ? 0.8 0.7 -5000 0 working point 5000 10000 -2 p2[m ] 2s C 1 2000m -2 Working points (8 macroparameters) I [kA] 3000 p1 0 2500 p1 0 E1 130MeV E 2 450MeV 2000 r1 1.93m 1500 p1 0 1000 C1 2.84 r2 6m 500 p2 2000m 2 0 -100 -50 0 50 100 s [μm] 1 C=48 p1 m -1 1 - a free parameter to move the peak Working points (8 macroparameters) Charge Q, nC Energy in BC2 E1, [MeV] Deflecting radius in BC3 r2, [m] Compression in BC2 C1 Total compression C First derivative p1, [m-1] Second derivative p2, [m-2] 1 6 2.84 48 1 2e3 0.5 6.93 4.63 90 1 3.5e3 7.8 6.57 150 0.7 4e3 0.1 9.3 10.3 240 0 4e3 0.02 15.17 31.8 (12) 1000 -0.5 5e3 130 0.25 Energy in BC3 E2, [MeV] Deflecting radius in BC2 r1, [m] 450 1.93 C1 : scaling for different charges x'' k x x re I ec 3 x ( x y ) x we have used another scaling max[ I1 (Q)] r 2 (Q) ~ max[ I1(Q)] max[ I0 (Q)] C1(Q) ~ ~ const 2Q (Q) max[ I 0 (Q)] C1 (Q) 4Q ~ const Working points (6 equations => 6 RF parameters) 8 macroparameters define 6 equations s1 1 E (0) E , E (0) E (0) C 20 1 10 1 , 2 s 2 3 s s s2 1 2 (0) p , 2 (0) C , (0) p2 . 1 2 3 s s s Analytical solution without self-fields* A0 (x0 ) f0 x0 A01 (f0 ) nonlinear operator (defined analytically) *M.Dohlus and I.Zagorodnov, A semi analytical modelling of two-stage bunch compression with collective effects, (in preparation) V1 1 V13 x0 13 V2 2 E10 E 20 C1 f0 C p1 p2 Analytical solution without self-fields x0 A01 (f0 ) Solution with self-fields A(x) f0 x A01 A0 (x) f0 A(x) nonlinear operator (tracking with self-fields) numerical tracking fn1 A(xn1) xn A01 A0 (xn1 ) f0 A(xn1 ) fn1 f0 fn1 gn gn1 fn1 xn A01(gn ) residual in macroscopic parameters analytical correction of RF parameters FLASH I simulation methods (looking for working points) 1d analytical solution without collective effects (8 macroparameters -> 6 RF settings) x0 A01 (f0 ) initial guess A1(x1) f0 ~ 5 iterations 1d tracking with space charge and wakes ~ seconds (1 cpu) accelerator E1 s1 E0 s0 V cosks0 s1 s0 compressor E1 s1 E0 s0 s1 s0 s0 r56 t566 2 u5666 3 quasi 3d tracking with all collective effects accelerator ~ 30 min (1 cpu) s1 s0 matrix transport for x & y x0 x1 A 2 ( x 2 ) f0 ~ 5 iterations CSRtrack 3d tracking with all collective effects ~ 10 h (46 cpu-s) E1 s1 E0 s0 V cosks0 Astra CSRtrack A(x2 ) f f f0 final result Working points (6 equations => 6 RF parameters) s1 1 E (0) E , E (0) E (0) C 20 1 10 1 , 2 s 2 3 s s s2 1 2 (0) p , 2 (0) C , (0) p2 . 1 2 3 s s s 8 macroparameters define 6 equations Analytical solution without self-fields + iterative procedure with them RF settings in accelerating modules Charge, nC V1, [MV] 1, [deg] V39, [MV] 39, [deg] V2, [MV] 2, [deg] 1 144 -4.66 22.6 145 350 23.4 0.5 143.7 4.042 19.65 158.4 351 23.65 0.25 143.36 2.493 20.81 153.9 352.6 23.96 0.1 144.8 -6.31 25.6 137.5 356.5 25.62 0.02 144.9 -3.894 25.58 141.65 339.8 19.385 ACC39 Q=1 nC E [MeV] Phase space Current, emittance, energy spread 2.5 1006 I [kA] x [μm] 1004 1002 2 1000 998 340 fs 1.5 996 -50 0 y [μm] 50 1 0.5 0 -100 s [μm] E [MeV] -50 0 50 100 s [μm] xproj 3 [μm] yproj 1.4 [μm] Q=0.5 nC E [MeV] Phase space Current, emittance, energy spread 2.5 1004 1002 2 I [kA] 1000 130 fs 998 -50 1.5 0 x [μm] 50 1 y [μm] 0.5 0 -60 E [MeV] -40 -20 0 20 40 60 s [μm] s [μm] xproj 2.5 [μm] yproj 0.84 [μm] Q=0.25 nC E [MeV] Phase space Current, emittance, energy spread 2.5 1003 1002 I [kA] 1001 2 1000 999 50fs 998 -20 -10 0 10 20 30 1.5 1 x [μm] y [μm] 0.5 Space charge impact 0 -30 s [μm] E [MeV] -20 -10 0 10 20 30 s [μm] xproj 1.14 [μm] yproj 0.74 [μm] Q=0.1 nC E [MeV] Phase space Current, emittance, energy spread 1004 2.5 1002 1000 998 2 I [kA] 996 -10 -5 0 5 10 1.5 25fs 1 0.5 0 -15 y [μm] x [μm] E [MeV] -10 -5 0 5 10 15 s [μm] s [μm] xproj 2 [μm] yproj 0.6 [μm] Q=0.02 nC E [MeV] Phase space Current, emittance, energy spread 1004 1.5 1002 1000 I [kA] 998 996 -10 -5 0 5 10 1 6 fs 0.5 E [MeV] 0 -5 -4 -3 -2 -1 x [μm] y [μm] 0 1 2 3 4 5 s [μm] s [μm] xproj 0.48 [μm] yproj 0.25 [μm] Q=0.02 nC 1.6A31.8 51A 31.4=1600A ACC39 proj x, y xproj 0.2 [μm] yproj 0.17 [μm] 0.17 [μm] xproj 0.27 [μm] yproj 0.17 [μm] E [MeV] E [MeV] E [MeV] CSR impact 0.3 0.15 0.25 E [keV] 0.2 0.15 I [A] 10 x [μm] 0.1 0.05 0 -5000 0 5000 s [μm] x [μm] 1.5 I [kA] 0.1 I [kA] 0.05 y [μm] 0.5 E [MeV] 0 -100 -50 0 50 1 100 s [μm] 0 -10 -5 0 5 10 s [μm] Q=0.02 nC r56 =0 [m], t566=0.06 [m] ACC39 xproj 0.29 [μm] yproj 0.23 [μm] xproj 0.5 [μm] yproj 0.24 [μm] E [MeV] xproj 0.5 [μm] yproj 0.25 [μm] E [MeV] E [MeV] Space charge impact I [kA] 1.5 1 0.5 0.5 -10 -5 0 5 I [kA] 1.5 1 0 10 s [μm] s [μm] s [μm] s [μm] 0 I [kA] 1.5 1 0.5 -10 -5 0 5 10 s [μm] 0 -5 0 5s [μm] Tolerances (analytically) without self fields (10 % change of compression) Q, nC ACC1 ACC39 1 0.5 0.25 0.1 0.02 |V|/V 0.001 0.004 0.0012 0.0003 0.00004 ||, degree 0.065 0.025 0.013 0.007 0.0014 0.008 0.01 0.0026 0.0008 0.00013 0.13 0.061 0.033 0.02 0.004 0.0042 0.0033 0.0026 0.0024 0.0016 0.15 0.15 0.15 0.17 0.17 |V|/V ~O(C-1) ||, degree ACC2/3 |V|/V ||, degree ~O(C2-1) Tolerances (from tracking) with self fields agree with this table FLASH parameters How to provide (1) a well conditioned electron beam and (2) what are the properties of the radiation? (1) Self consistent beam dynamics simulations. We are able to provide the well conditioned electron beam for different charges. But RF tolerances for small charges are tough. (2) FEL simulations (next slides). Slice parameters for SASE simulations Slice parameters are extracted from S2E simulations for SASE simulations x y x y x y x' I [kA] Q 1 nC 1 x y I current slice emittance x [ m m]1.5 2.5 Q 1 nC Q 0.5 nC Q 0.25 nC 2 Q 0.25 nC 1.5 Q 0.02 nC 1 0.5 Q 0.02 nC 0 y' 0.5 s s -2 -1 0 1 2 0 s -50 0 50 Charge Q, nC 1 0.25 0.02 Longitudinal electron beam size s, mm 42 13 3.6 Transverse electron beam size r, mm 80 68 36 s [μm] Radiation energy statistics (200-500 runs) E μJ Q nC z Mean energy Radiation pulse width (RMS) fs 90 3 10 80 1 nC 70 2 10 60 0. 02 nC 0 50 1 nC 40 10 0.25 nC 30 0. 25 nC 20 10 -2 10 0 5 10 15 0.02 nC 0 0 20 5 10 15 20 z [m] Charge, nC Mean radiation energy, mJ Pulse radiation width (FWHM), fs 25 z [ m] 1 0.5 0.25 0.1 0.02 1000-1400 700 500 200 70 30 17 7 30 2 Radiation energy statistics Q=1 nC 1 2.5 p( E ) Q=0.02 nC p( E ) Gamma distr. 0.8 14% M48 2 1.5 z=10m 50% M4 0.6 0.4 1 0.2 0.5 0 0 12 0.5 1 1.5 2 2.5 3 E E 0 0 p( E ) 3 z=20m 8 1.5 4 1 2 0.5 0.5 1 1.5 2 2.5 1.5 3 E E 2 2.5 3 p( E ) 12% 2 6 0 0 1 2.5 3% 10 0.5 E E 0 0 0.5 1 1.5 2 2.5 3 E E Temporal structure Q= 1 nC Q=0.02 nC 0.8 0.6 0.7 Pi GW 0.5 0.4 z=10m 0.5 0.4 0.3 0.2 0.1 GW -100 0 100 200 300 0 -20 t [fs] 10 -10 0 10 10 Pi GW 8 GW P i GW 0.2 P -200 P 0.3 I [a.u] 0.1 0 -300 I [a.u] 0.6 z=20m I [a.u] 6 P I [a.u] 4 GW 4 P 2 2 GW 0 -300 t [fs] Pi GW 8 6 20 -200 -100 0 100 200 300 t [fs] 0 -20 -10 0 10 20 t [fs] Summary with harmonic module Bunch charge, nC 1 0.5 0.25 without* 0.1 0.02 0.5-1 Wavelength, nm 6.5 6 Beam energy, MeV 1000 1000 2.5 Peak current, kA 2.1 1-1.5 1.3-2.2 Slice emmitance,mm-mrad 1-1.3 0.7-0.9 0.5-0.7 0.4-0.5 0.3-0.4 1.5-3.5 Slice energy spread, MeV 0.1-0.2 0.1-0.2 0.25 0.2-0.4 0.25 0.3 Saturation length, m 13 12 11 10 11 22-32 Energy in the rad. pulse, mJ 10001400 700 500 200 30 50-150 Radiation pulse duration FWHM, fs 70 30 17 7 2 15-50 5-7 Averaged peak power, GW Spectrum width, % 0.4-0.6 Coherence time, fs 4-5 2-4 0.8-1 - 0.4-0.6 - *) E.L.Saldin at al, Expected properties of the radiation from VUV-FEL at DESY, TESLA FEL 2004-06, 2004. - FLASH Simulation results (1) Self consistent beam dynamics simulations We are able to provide the well conditioned electron beam for different charges. But RF tolerances for small charges are tough. (2) FEL simulations The charge tuning (20-1000 pC) in SASE mode allows to tune - the radiation pulse energy (30-1400 mJ) - the pulse width (FWHM 3-70 fs).