Transcript Document
Impact of climate change on Latvian water environment WP1: Impact of the climate change on runoff, nutrient fluxes and regime of Gulf of Riga Uldis Bethers Laboratory for mathematical modelling of environmental and technological processes Faculty of Physics and mathematics, University of Latvia WP1. GOAL Modelling of several scenarious of the change of water environment using the existing climate change scenarious for Baltic Sea region WP1. TASKS WP1a. Evaluate and adapt the results from the regional climate models, and design the series of data which form the state of the water objects. Scenarios WP1b. Modeling of surface water and nutrients runoff for Latvia. Preparation of data series of river runoff for climate change scenarios Calculation of data series of nutrient runoff to the Gulf of Riga WP1c. Adapt 3D sea state models to produce the data series for the forecast of biogeochemical processes and sea ecosystem evolution. Oceanographic modelling WP1d. Provide modelling and data analysis support for other WPs. Support Climate change scenarios (IPCC) Information flows Global circulation models Regional climate models River runoff scenarios Nutrient runoff scenarios Climate change scenarios adapted for Latvia Sea state scenarios (Gulf of Riga) Impact assessment (on Latvian water environment) Climate scenarios 1A Methodics for measurement and comparison of RCM skill for control period Double downscaling: bias correction (statistical downscaling via histogram equalisation) of dynamically (via RCM) downscaled GCM data – T, p, r Histogram equalisation for moving time window [instead of daily or monthly or seasonal equalisation] 21 model (PRUDENCE) 118 observation stations and selected RCM mesh Daily meteorological data (temperature, precipitation, wind, humidity, cloudiness) 900 Daily data series for Latvia – contemporary climate, climate 850 change scenarios A2 B2 Nokrišņi 800 REF 750 700 MODA2 MODB2 650 MODREF OBS 600 4 5 6 7 8 Temperatūra 9 10 11 Insight : T-p diagram for Dobele, contemporary climate and A2 scenario 3 J ūl Rainy, long autumn Pleasant Sep/Oct Aug Dec J ūn Aug 2 J an O kt Winter only in Feb O kt Summer 2 S ep months longer, hot, Mūs dienu klimats dry F eb Dec May Apr J an Mar F eb Spring 2 weeks earlier Mar 1.5 1 S cenārijs A2 0.5 -10 -5 0 5 10 T emperatūra, deg C 15 20 25 Nokriš ņi, mm/d S ep Nov 2.5 J ūl Dobele: comparison scenarios vs. observations 1.80 1.80 1.80 A2 A2 A2 1.75 1.75 1.75 BBB222 1.70 1.70 1.70 p, p,mm/d mm/d p, mm/d Novērotās klimata iz maiņas 1.65 1.65 1.65 1.60 1.60 1.60 1961-1990 1961-1990RR RKKKMM M 1978-2007 1961-1990 1978-2007 1.55 1.55 1.55 1961-1990 novērojumi 1961-1990novērojumi novērojumi 1961-1990 1.50 1.50 1.50 555 666 777 888 deg degCCC TTT, ,,deg 999 10 10 10 11 11 11 Noteces modelēšana 1B • Hidroloģisko modeļu ansambļa pieeja 2008 • Noteces kalibrācija / verifikācija ūdensobjektiem • Upju noteces scenāriji Atziņa 2008 – upju notece RJL sateces baseinā samazināsies vismaz par 5-10% • Reģionālā upju noteces izmaiņu analīze Latvijai 2009 • UBA noteces scenāriji 2009 • Biogēnu noteces scenāriji 2009 (paldies Bārbelei ) Atziņa – hidroloģiskā režīma daudzveidība Latvijā samazināsies NOVITĀTE PASAULĒ “Double ensemble forecast: ensemble of RCM vs. ensemble of hydrological models” River runoff 1B Double ensemble approach Regional climate model Regional climate model Regional climate model River run-off Meteorological forcing Hydrological model Bias correction (independent from RCM) Modified meteorological forcing Hydrological model (independent from RCM) Hydrological model (independent from RCM) Impact assessment by RCM ensemble (Bērze) Increase of maximum monthly Q, % 80% 60% 40% 20% 0% -25% 0% 25% 50% 75% -20% -40% Uncertainty prevails -60% Increase of mean annual Q, % 100% 125% Impact assessment by hydrological model ensemble Increase of maximum monthly Q, % 25% 20% Uncertainty remains but is decreased 15% 10% 5% 0% -25% -20% -15% -10% -5% -5% 0% -10% Decrease 5% 10% 15% of both annual -15% run-off and its maximum monthly value expected -20% -25% Increase of mean annual Q, % Seasonal analysis by hydrological model ensemble Mean monthly discharge, m3/s 12 Spring snow-melt flood significantly decreases 10 8 6 BASIN-CTL SHE-CTL FIBASIN-CTL BASIN-A2 SHE-A2 FIBASIN-A2 Summer low flow period longer and better pronounced 4 2 Autumn rainfall period 0extends into winter. Winter low 1 flow disappears 3 5 7 Month 9 11 13 Regional analysis: data series for RBD (MIKE Basin) 40 40 Salaca-CTL Mean monthly runoff, mm Abava-A2 30 20 Salaca-A2 30 20 10 10 0 0 1 1 3 5 7 9 11 3 5 13 7 9 11 13 Month Month 40 40 Mean monthly runoff, mm Dubna-CTL Bērze-CTL Mean monthly runoff, mm Mean monthly runoff, mm Abava-CTL Bērze-A2 30 20 Dubna-A2 30 20 10 10 0 1 0 1 3 5 7 Month 9 11 13 3 5 7 Month 9 11 13 Regional analysis (MIKE BASIN) Maximum monthly runoff, mm 45 W and N regions become similar to each other and contemporary E region 35 25 C and E regions get closer 15 140 180 220 Abava-CTL Abava-A2 Bērze-CTL Bērze-A2 Salaca-CTL Salaca-A2 Dubna-CTL Dubna-A2 260 Mean annual runoff, mm 300 Nutrient run-off 1B* River run-off was calculated for control period and A2 scenario by MIKE BASIN hydrological model with daily time-step. Model was set-up for the drainage basin of the Gulf of Riga, dividing it into 42 subbasins. Yearly average nutrient loads are assumed to remain the same in the A2 scenario, while their seasonal distribution have been changed. Loads of Norg, N-NH4, N-NO3, Porg, P-PO4 with monthly time-step are used as the input for the nutrient model of the Gulf of Riga. 25000 CTL A2 Nitrogen load, tonne/month 20000 15000 10000 5000 0 Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Sea state modeling 1C ORIGINAL PLAN – 3D climatic modeling failed Gulf of Riga: vertical temperature distribution General Ocean Turbulence Model (GOTM) Coefficients of second order model: Cheng (2002) Dynamic equation (k-ε style) for TKE Dynamic dissipation rate equation Model forcing Climate data from PRUDENCE. Control: 1961-1990, Scenario A2: 2070-2100 Ins titute Model Driving data Ac ronym E xperiment S MHI R C AO high res . HadAM3H A2 HC C T L _22 control S MHI R C AO high res . HadAM3H A2 HC A2_22 s cenario Extra downscaling of RCM data (bias correction via histogram equalisation): relative humidity (used variable td2m) air temperature (used variable t2m) Original RCM data: sea level pressure (used variable MSLP) cloudiness (used variable clcov) wind speed (used variable w10m) wind direction (used variable w10dir) Calculations made for Gulf of Riga (50 m), 30 year period, daily output data – water temperature Physical model results – I (mean temperature distribution over depth) Surface T increase close to air T increase Depth, m 0 -5 Water 1961-1990 -10 Water 2071-2100 -15 Air 1961-1990 -20 Air 2071-2100 -25 T increase by 1,5 (bottom) to 3 (surface) degrees -30 -35 -40 -45 -50 0 1 2 3 4 5 6 7 Temperature, degC 8 9 10 11 12 Physical model results – II (mean daily pycnocline depth and its variation) 0 1961-1990 2071-2100 -10 ... stratification lasts longer Depth, m -20 -30 -40 -50 -60 Jan Feb Pycnocline Mar Apr earlier... Mai develops Jūn Jūl Aug Sep Okt Nov Dec Physical model results – III (mean time-depth plots of temperature) Contemporary climate Climate change scanario A2